BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7151784)

  • 1. Reconstitution of liver NADH: cytochrome b5 oxidoreductase and of Desulfovibvio vulgaris flavodoxin with 1-carba-1-deazaflavin.
    Pompon D; Guiard B; Lederer F
    Eur J Biochem; 1982 Nov; 128(2-3):377-82. PubMed ID: 7151784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of Cibacron blue F3GA to the flavin and NADH sites in cytochrome b5 reductase.
    Pompon D; Guiard B; Lederer F
    Eur J Biochem; 1980 Sep; 110(2):565-70. PubMed ID: 7439174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P-450 reductase.
    Vermilion JL; Ballou DP; Massey V; Coon MJ
    J Biol Chem; 1981 Jan; 256(1):266-77. PubMed ID: 6778861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-electron oxidation-reduction properties of hepatic NADH-cytochrome b5 reductase.
    Iyanagi T; Watanabe S; Anan KF
    Biochemistry; 1984 Mar; 23(7):1418-25. PubMed ID: 6326802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The FMN-binding domain of cytochrome P450BM-3: resolution, reconstitution, and flavin analogue substitution.
    Haines DC; Sevrioukova IF; Peterson JA
    Biochemistry; 2000 Aug; 39(31):9419-29. PubMed ID: 10924137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer.
    Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G
    Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors.
    Zeghouf M; Fontecave M; Macherel D; Covès J
    Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox properties of microsomal reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase and cytochrome b5.
    Iyanagi T
    Biochemistry; 1977 Jun; 16(12):2725-30. PubMed ID: 19038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox properties of the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 and reduced nicotinamide adenine dinucleotide-cytochrome b5 reductases.
    Iyanagi T; Makino N; Mason HS
    Biochemistry; 1974 Apr; 13(8):1701-10. PubMed ID: 4151581
    [No Abstract]   [Full Text] [Related]  

  • 12. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone.
    Bradley LH; Swenson RP
    Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of FAD-dependent NADPH-cytochrome P-450 reductase.
    Kurzban GP; Strobel HW
    J Biol Chem; 1986 Jun; 261(17):7824-30. PubMed ID: 3086319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 31P-nuclear-magnetic-resonance study of NADPH-cytochrome-P-450 reductase and of the Azotobacter flavodoxin/ferredoxin-NADP+ reductase complex.
    Bonants PJ; Müller F; Vervoort J; Edmondson DE
    Eur J Biochem; 1990 Jul; 190(3):531-7. PubMed ID: 2115440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the microsomal mixed-function oxidase system: mechanism of action of hepatic NADPH-cytochrome P-450 reductase.
    Iyanagi T; Makino R; Anan FK
    Biochemistry; 1981 Mar; 20(7):1722-30. PubMed ID: 6784758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Location of functional -SH groups in NADPH-cytochrome P-450 reductase from rabbit liver microsomes.
    Nisimoto Y; Shibata Y
    Biochim Biophys Acta; 1981 Dec; 662(2):291-9. PubMed ID: 6797474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleophilic addition reactions of free and enzyme-bound deazaflavin.
    Jorns MS; Hersh LB
    J Biol Chem; 1976 Aug; 251(16):4872-81. PubMed ID: 8450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the purified NADH-cytochrome b5 reductase of human erythrocytes as a FAD-containing enzyme.
    Yubisui T; Takeshita M
    J Biol Chem; 1980 Mar; 255(6):2454-6. PubMed ID: 7358682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the microsomal electron-transport system of anaerobically grown yeast. V. Purification and characterization of NADPH-cytochrome c reductase.
    Kubota S; Yoshida Y; Kumaoka H; Furumichi A
    J Biochem; 1977 Jan; 81(1):197-205. PubMed ID: 14931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.