These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7152105)

  • 1. Neural influence on the postnatal changes in acetylcholine receptor distribution at nerve-muscle junctions in the mouse.
    Slater CR
    Dev Biol; 1982 Nov; 94(1):23-30. PubMed ID: 7152105
    [No Abstract]   [Full Text] [Related]  

  • 2. Postnatal maturation of nerve-muscle junctions in hindlimb muscles of the mouse.
    Slater CR
    Dev Biol; 1982 Nov; 94(1):11-22. PubMed ID: 7152099
    [No Abstract]   [Full Text] [Related]  

  • 3. Acetylcholine receptors at the neuromuscular junction: developmental change in receptor turnover.
    Burden S
    Dev Biol; 1977 Nov; 61(1):79-85. PubMed ID: 924025
    [No Abstract]   [Full Text] [Related]  

  • 4. Acetylcholine receptor distribution and synapse elimination at the developing neuromuscular junction of mdx mice.
    Minatel E; Neto HS; Marques MJ
    Muscle Nerve; 2003 Nov; 28(5):561-9. PubMed ID: 14571457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural agrin increases postsynaptic ACh receptor packing by elevating rapsyn protein at the mouse neuromuscular synapse.
    Brockhausen J; Cole RN; Gervásio OL; Ngo ST; Noakes PG; Phillips WD
    Dev Neurobiol; 2008 Aug; 68(9):1153-69. PubMed ID: 18506821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of agrin and laminin increase acetylcholine receptor clustering and enhance functional neuromuscular junction formation In vitro.
    Zhang BG; Quigley AF; Bourke JL; Nowell CJ; Myers DE; Choong PF; Kapsa RM
    Dev Neurobiol; 2016 May; 76(5):551-65. PubMed ID: 26251299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synapse disassembly and formation of new synapses in postnatal muscle upon conditional inactivation of MuSK.
    Hesser BA; Henschel O; Witzemann V
    Mol Cell Neurosci; 2006 Mar; 31(3):470-80. PubMed ID: 16337809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Formation of neuromuscular junction, with special reference to acetylcholine receptor accumulation].
    Kidokoro Y
    Tanpakushitsu Kakusan Koso; 1983 Apr; 28(5):521-30. PubMed ID: 6361886
    [No Abstract]   [Full Text] [Related]  

  • 9. Neuronal control of acetylcholine receptor turnover rate at a vertebrate neuromuscular junction.
    Levitt TA; Loring RH; Salpeter MM
    Science; 1980 Oct; 210(4469):550-1. PubMed ID: 7423205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of Fgf18 causes abnormal clustering of motor nerve terminals at the neuromuscular junction with reduced acetylcholine receptor clusters.
    Ito K; Ohkawara B; Yagi H; Nakashima H; Tsushima M; Ota K; Konishi H; Masuda A; Imagama S; Kiyama H; Ishiguro N; Ohno K
    Sci Rep; 2018 Jan; 8(1):434. PubMed ID: 29323161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental changes in acetylcholine receptor aggregates at rat skeletal neuromuscular junctions.
    Steinbach JH
    Dev Biol; 1981 Jun; 84(2):267-76. PubMed ID: 20737864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presynaptic localization of the small conductance calcium-activated potassium channel SK3 at the neuromuscular junction.
    Roncarati R; Di Chio M; Sava A; Terstappen GC; Fumagalli G
    Neuroscience; 2001; 104(1):253-62. PubMed ID: 11311547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nerve terminal contributes to acetylcholine receptor organization at the dystrophic neuromuscular junction of mdx mice.
    Marques MJ; Taniguti AP; Minatel E; Neto HS
    Anat Rec (Hoboken); 2007 Feb; 290(2):181-7. PubMed ID: 17441210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Junctional and extrajunctional acetylcholine receptors.
    Tipnis UR; Malhotra SK
    Can J Physiol Pharmacol; 1980 May; 58(5):445-58. PubMed ID: 6998547
    [No Abstract]   [Full Text] [Related]  

  • 15. Pre- and postsynaptic maturation of the neuromuscular junction during neonatal synapse elimination depends on protein kinase C.
    Lanuza MA; Garcia N; Santafé M; González CM; Alonso I; Nelson PG; Tomàs J
    J Neurosci Res; 2002 Mar; 67(5):607-17. PubMed ID: 11891773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glia cell line-derived neurotrophic factor regulates the distribution of acetylcholine receptors in mouse primary skeletal muscle cells.
    Yang LX; Nelson PG
    Neuroscience; 2004; 128(3):497-509. PubMed ID: 15381279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dissection of neuromuscular junction formation.
    Hoch W
    Trends Neurosci; 2003 Jul; 26(7):335-7. PubMed ID: 12850425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in synaptic potential properties during acetylcholine receptor accumulation and neurospecific interactions in Xenopus nerve-muscle cell culture.
    Kidokoro Y; Anderson MJ; Gruener R
    Dev Biol; 1980 Aug; 78(2):464-83. PubMed ID: 7409310
    [No Abstract]   [Full Text] [Related]  

  • 19. In vitro autoradiography of [3H]acetylcholine binding in rat hind limb muscles.
    Askmark H; Gillberg PG
    Neurosci Lett; 1987 Aug; 79(3):277-80. PubMed ID: 3658219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The immunopathological basis of acetylcholine receptor deficiency in myasthenia gravis.
    Engel AG
    Prog Brain Res; 1979; 49():423-34. PubMed ID: 515440
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.