These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7153184)

  • 1. Supporting-cell and extracellular responses to acoustic clicks in the free-standing region of the alligator lizard cochlea.
    Baden-Kristensen K; Weiss TF
    Hear Res; 1982 Dec; 8(3):295-315. PubMed ID: 7153184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor potentials of lizard hair cells with free-standing stereocilia: responses to acoustic clicks.
    Baden-Kristensen K; Weiss TF
    J Physiol; 1983 Feb; 335():699-721. PubMed ID: 6875897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Components of cochlear electric responses in the alligator lizard.
    Kaplan MS; Szaro BG; Weiss TF
    Hear Res; 1983 Dec; 12(3):323-51. PubMed ID: 6668256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endolymphatic and intracellular resting potential in the alligator lizard cochlea.
    Weiss TF; Altmann DW; Mulroy MJ
    Pflugers Arch; 1978 Jan; 373(1):77-84. PubMed ID: 565037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor potentials of lizard cochlear hair cells with free-standing stereocilia in response to tones.
    Holton T; Weiss TF
    J Physiol; 1983 Dec; 345():205-40. PubMed ID: 6663499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
    Crawford AC; Fettiplace R
    J Physiol; 1980 Sep; 306():79-125. PubMed ID: 7463380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical resonance of isolated hair cells does not account for acoustic tuning in the free-standing region of the alligator lizard's cochlea.
    Eatock RA; Saeki M; Hutzler MJ
    J Neurosci; 1993 Apr; 13(4):1767-83. PubMed ID: 8385208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency selectivity of hair cells and nerve fibres in the alligator lizard cochlea.
    Holton T; Weiss TF
    J Physiol; 1983 Dec; 345():241-60. PubMed ID: 6663500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stages of degradation of timing information in the cochlea: a comparison of hair-cell and nerve-fiber responses in the alligator lizard.
    Weiss TF; Rose C
    Hear Res; 1988 May; 33(2):167-74. PubMed ID: 3397326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of direct current on dc receptor potentials from cochlear inner hair cells in the guinea pig.
    Nuttall AL
    J Acoust Soc Am; 1985 Jan; 77(1):165-75. PubMed ID: 3973211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetraethylammonium effects on cochlear potentials in the guinea pig.
    van Emst MG; Klis SF; Smoorenburg GF
    Hear Res; 1995 Aug; 88(1-2):27-35. PubMed ID: 8576000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells.
    Russell IJ; Sellick PM
    J Physiol; 1983 May; 338():179-206. PubMed ID: 6875955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular recordings from supporting cells in the guinea pig cochlea: DC potentials.
    Oesterle EC; Dallos P
    J Neurophysiol; 1990 Aug; 64(2):617-36. PubMed ID: 1698939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Animal model of cochlear third window in the scala vestibuli or scala tympani.
    Attias J; Preis M; Shemesh R; Hadar T; Nageris BI
    Otol Neurotol; 2010 Aug; 31(6):985-90. PubMed ID: 20517168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency dependence of synchronization of cochlear nerve fibers in the alligator lizard: evidence for a cochlear origin of timing and non-timing neural pathways.
    Rose C; Weiss TF
    Hear Res; 1988 May; 33(2):151-65. PubMed ID: 3397325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating mechanical responses to pulsatile electrical stimulation of the cochlea.
    McAnally KI; Brown M; Clark GM
    Hear Res; 1997 Apr; 106(1-2):146-53. PubMed ID: 9112114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of discharge rate on sound pressure level in cochlear nerve fibers of the alligator lizard: implications for cochlear mechanisms.
    Eatock RA; Weiss TF; Otto KL
    J Neurophysiol; 1991 Jun; 65(6):1580-97. PubMed ID: 1875264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-stimulatory effects of direct current stimulation of the cochlea on auditory nerve activity.
    Cousillas H; Patuzzi RB; Johnstone BM
    Hear Res; 1988 Oct; 36(1):21-39. PubMed ID: 3198519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radial current flow and source density in the basal scala tympani.
    Garcia P; Clopton BM
    Hear Res; 1987 Nov; 31(1):55-64. PubMed ID: 3429349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.