These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 7153230)

  • 1. The influence of strain rate on adaptive bone remodelling.
    O'Connor JA; Lanyon LE; MacFie H
    J Biomech; 1982; 15(10):767-81. PubMed ID: 7153230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanically adaptive bone remodelling.
    Lanyon LE; Goodship AE; Pye CJ; MacFie JH
    J Biomech; 1982; 15(3):141-54. PubMed ID: 7096367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats.
    Mosley JR; Lanyon LE
    Bone; 1998 Oct; 23(4):313-8. PubMed ID: 9763142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive loading of the rat ulna in vivo induces a strain-related modeling response uncomplicated by trauma or periostal pressure.
    Torrance AG; Mosley JR; Suswillo RF; Lanyon LE
    Calcif Tissue Int; 1994 Mar; 54(3):241-7. PubMed ID: 8055374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.
    Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D
    Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.
    Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ
    J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain magnitude related changes in whole bone architecture in growing rats.
    Mosley JR; March BM; Lynch J; Lanyon LE
    Bone; 1997 Mar; 20(3):191-8. PubMed ID: 9071468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional adaptation of bone to increased stress. An experimental study.
    Goodship AE; Lanyon LE; McFie H
    J Bone Joint Surg Am; 1979 Jun; 61(4):539-46. PubMed ID: 438241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone stress in the horse forelimb during locomotion at different gaits: a comparison of two experimental methods.
    Biewener AA; Thomason J; Goodship A; Lanyon LE
    J Biomech; 1983; 16(8):565-76. PubMed ID: 6643529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanical strain in the forearm bones].
    Opitz A
    Wien Klin Wochenschr Suppl; 1983; 141():1-27. PubMed ID: 6579803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth rate rather than gender determines the size of the adaptive response of the growing skeleton to mechanical strain.
    Mosley JR; Lanyon LE
    Bone; 2002 Jan; 30(1):314-9. PubMed ID: 11792603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship of functional stress and strain to the processes of bone remodelling. An experimental study on the sheep radius.
    Lanyon LE; Magee PT; Baggott DG
    J Biomech; 1979; 12(8):593-600. PubMed ID: 479211
    [No Abstract]   [Full Text] [Related]  

  • 13. In vivo strains in the femur of river cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of loading mechanics.
    Butcher MT; Espinoza NR; Cirilo SR; Blob RW
    J Exp Biol; 2008 Aug; 211(Pt 15):2397-407. PubMed ID: 18626073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns of strain in the macaque ulna during functional activity.
    Demes B; Stern JT; Hausman MR; Larson SG; McLeod KJ; Rubin CT
    Am J Phys Anthropol; 1998 May; 106(1):87-100. PubMed ID: 9590526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Static vs dynamic loads as an influence on bone remodelling.
    Lanyon LE; Rubin CT
    J Biomech; 1984; 17(12):897-905. PubMed ID: 6520138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.
    Norman SC; Wagner DW; Beaupre GS; Castillo AB
    J Biomech; 2015 Jan; 48(1):53-8. PubMed ID: 25443882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-amplitude, broad-frequency vibration effects on cortical bone formation in mice.
    Castillo AB; Alam I; Tanaka SM; Levenda J; Li J; Warden SJ; Turner CH
    Bone; 2006 Nov; 39(5):1087-1096. PubMed ID: 16793358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain related electrical potentials recorded in vitro and in vivo.
    Lanyon LE; Hartman W
    Calcif Tissue Res; 1977 Feb; 22(3):315-27. PubMed ID: 843972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of the bone-tissue remodeling response to axial and torsional loading in the turkey ulna.
    Rubin C; Gross T; Qin YX; Fritton S; Guilak F; McLeod K
    J Bone Joint Surg Am; 1996 Oct; 78(10):1523-33. PubMed ID: 8876580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location.
    Hsieh YF; Robling AG; Ambrosius WT; Burr DB; Turner CH
    J Bone Miner Res; 2001 Dec; 16(12):2291-7. PubMed ID: 11760844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.