These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The identification and characterisation of chloramphenicol-aldehyde, a new human metabolite of chloramphenicol. Holt DE Eur J Drug Metab Pharmacokinet; 1995; 20(1):35-42. PubMed ID: 7588992 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive validation of a liquid chromatography-tandem mass spectrometry method for the confirmation of chloramphenicol in urine including stability of the glucuronide conjugate and efficiency of deconjugation. Gaugain M; Chotard MP; Hurtaud-Pessel D; Verdon E J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Feb; 1011():145-50. PubMed ID: 26773882 [TBL] [Abstract][Full Text] [Related]
7. Interference with high performance liquid chromatographic chloramphenicol assay in a patient receiving dobutamine. Powel MB; Robinson CA; Furner RL Ther Drug Monit; 1985; 7(1):121-2. PubMed ID: 3992619 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous determination of chloramphenicol and chloramphenicol succinate in plasma using high-performance liquid chromatography. Velagapudi R; Smith RV; Ludden TM; Sagraves R J Chromatogr; 1982 Mar; 228():423-8. PubMed ID: 7076772 [No Abstract] [Full Text] [Related]
9. High-performance liquid chromatographic determination of chloramphenicol and its monosuccinate ester in plasma. Oseekey KB; Rowse KL; Kostenbauder HB J Chromatogr; 1980 Jun; 182(3-4):459-64. PubMed ID: 7391190 [No Abstract] [Full Text] [Related]
11. Simultaneous measurement of chloramphenicol sodium succinate and chloramphenicol in presence of furosemide in plasma and urine. Nahata MC J Clin Pharm Ther; 1993 Aug; 18(4):301. PubMed ID: 8227239 [No Abstract] [Full Text] [Related]
12. Bioavailability and clearance of chloramphenicol after intravenous chloramphenicol succinate. Nahata MC; Powell DA Clin Pharmacol Ther; 1981 Sep; 30(3):368-72. PubMed ID: 7273601 [TBL] [Abstract][Full Text] [Related]
13. The benefits of drug monitoring in patients with bacterial meningitis, eg, chloramphenicol monitoring. Rosin H; Crea A; Forster J Pediatr Pharmacol (New York); 1983; 3(3-4):175-80. PubMed ID: 6377214 [TBL] [Abstract][Full Text] [Related]
14. Separation of some chloramphenicol intermediates by high-pressure liquid chromatography. Vigh G; Inczédy J J Chromatogr; 1976 Jan; 116(2):472-4. PubMed ID: 1245584 [No Abstract] [Full Text] [Related]
15. The high performance liquid chromatographic measurement of chloramphenicol and its succinate esters in serum. Soldin SJ; Golas C; Rajchgot P; Prober CG; MacLeod SM Clin Biochem; 1983 Jun; 16(3):171-7. PubMed ID: 6851080 [No Abstract] [Full Text] [Related]
16. Total determination of chloramphenicol residues in foods by liquid chromatography-tandem mass spectrometry. Kikuchi H; Sakai T; Teshima R; Nemoto S; Akiyama H Food Chem; 2017 Sep; 230():589-593. PubMed ID: 28407954 [TBL] [Abstract][Full Text] [Related]
18. The use of high-pressure liquid chromatography in the preparation of tritium-labeled chloramphenicol and its analogs. Martin JL; Taburet AM; Pohl LR Anal Biochem; 1979 Jul; 96(1):215-9. PubMed ID: 495985 [No Abstract] [Full Text] [Related]
19. High-performance liquid chromatographic determination of chloramphenicol and four analogues using reductive and oxidative electrochemical and ultraviolet detection. Abou-Khalil S; Abou-Khalil WH; Masoud AN; Yunis AA J Chromatogr; 1987 Jun; 417(1):111-9. PubMed ID: 3624389 [TBL] [Abstract][Full Text] [Related]
20. [Need for the determination of chloramphenicol levels in the treatment of bacterial-purulent meningitis with chloramphenicol succinate in infants and small children]. Forster J; Hufschmidt C; Niederhoff H; Künzer W Monatsschr Kinderheilkd; 1985 Apr; 133(4):209-13. PubMed ID: 4000136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]