These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 7153887)
1. Synthesis and catalytic activity of poly-L-histidyl-L-aspartyl-L-seryl-glycine. Sarwal AN; Adigun EO; Stephani RA; Kapoor A J Pharm Sci; 1982 Dec; 71(12):1380-3. PubMed ID: 7153887 [TBL] [Abstract][Full Text] [Related]
2. Synthetic substitute enzymes. II. Synthesis & catalytic properties of L-asparaginyl-L-lysyl-L-histidyl-L-histidyl-L-arginine. Naithani VK; Mathur KB; Dhar MM Indian J Biochem; 1969 Mar; 6(1):10-4. PubMed ID: 4257188 [No Abstract] [Full Text] [Related]
3. Studies on chymotrypsin-like catalysis by synthetic peptides. Corey MJ; Hallakova E; Pugh K; Stewart JM Appl Biochem Biotechnol; 1994; 47(2-3):199-210; discussion 210-2. PubMed ID: 7944338 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, conformation and reactivity towards p-nitrophenyl acetate of polypeptides incorporating aspartic acid, serine and histidine. Trudelle Y Int J Pept Protein Res; 1982 May; 19(5):528-35. PubMed ID: 6811470 [TBL] [Abstract][Full Text] [Related]
6. Design and synthesis of a peptide having chymotrypsin-like esterase activity. Hahn KW; Klis WA; Stewart JM Science; 1990 Jun; 248(4962):1544-7. PubMed ID: 2360048 [TBL] [Abstract][Full Text] [Related]
7. Kinetic analysis of the catalytic properties of peptides in ester hydrolysis. Petz D; Schneider F Z Naturforsch C Biosci; 1976; 31(11-12):675-8. PubMed ID: 13549 [TBL] [Abstract][Full Text] [Related]
9. A new enzyme model for enantioselective esterases based on molecularly imprinted polymers. Emgenbroich M; Wulff G Chemistry; 2003 Sep; 9(17):4106-17. PubMed ID: 12953196 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of tetrapeptide Bz-RGDS-NH2 by a combination of chemical and enzymatic methods. Huang YB; Cai Y; Yang S; Wang H; Hou RZ; Xu L; Xiao-Xia W; Zhang XZ J Biotechnol; 2006 Sep; 125(3):311-8. PubMed ID: 16621088 [TBL] [Abstract][Full Text] [Related]
11. Kinetics and equilibrium of enzymatic synthesis of peptides in aqueous/organic biphasic systems. Thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester. Nakanishi K; Kimura Y; Matsuno R Eur J Biochem; 1986 Dec; 161(3):541-9. PubMed ID: 3792308 [TBL] [Abstract][Full Text] [Related]
12. Studies on trypsin inhbitors. Part II. Synthesis of the protected tetrapeptide (sequence 11-14) of porcine pancreatic secretory trypsin inhibitor II (Kazal). Guggi A; Tomatis R; Periotto V; Rocchi R Int J Pept Protein Res; 1976; 8(1):79-85. PubMed ID: 1248929 [TBL] [Abstract][Full Text] [Related]
13. Investigation of a general base mechanism for ester hydrolysis in C-C hydrolase enzymes of the alpha/beta-hydrolase superfamily: a novel mechanism for the serine catalytic triad. Li JJ; Bugg TD Org Biomol Chem; 2007 Feb; 5(3):507-13. PubMed ID: 17252134 [TBL] [Abstract][Full Text] [Related]
14. Solubility and solution stability studies of different amino acid prodrugs of bromhexine. Aggarwal AK; Gupta M Drug Dev Ind Pharm; 2012 Nov; 38(11):1319-27. PubMed ID: 22283553 [TBL] [Abstract][Full Text] [Related]
15. Functional tuning of the catalytic residue pK Hiebler K; Lengyel Z; Castañeda CA; Makhlynets OV Proteins; 2017 Sep; 85(9):1656-1665. PubMed ID: 28544090 [TBL] [Abstract][Full Text] [Related]
16. Studies on the catalytic action of poly- -amino acids. VI. Hydrolysis of p-nitrophenyl acetate by an interaction between sulfhydryl and carboxyl groups in copoly (L-cys, L-glu). Komai T; Noguchi J J Biochem; 1971 Sep; 70(3):467-76. PubMed ID: 5120669 [No Abstract] [Full Text] [Related]
18. Capillary electrophoretic study of the degradation pathways and kinetics of the aspartyl model tetrapeptide Gly-Phe-Asp-GlyOH in alkaline solution. Brückner C; Imhof D; Scriba GK J Pharm Biomed Anal; 2013 Mar; 76():96-103. PubMed ID: 23298912 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of poly(Pro-Hyp-Gly)(n) by direct poly-condensation of (Pro-Hyp-Gly)(n), where n=1, 5, and 10, and stability of the triple-helical structure. Kishimoto T; Morihara Y; Osanai M; Ogata S; Kamitakahara M; Ohtsuki C; Tanihara M Biopolymers; 2005 Oct; 79(3):163-72. PubMed ID: 16094625 [TBL] [Abstract][Full Text] [Related]