These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 7153919)

  • 21. Spatial buffering of K+ by the retinal pigment epithelium in frog.
    Immel J; Steinberg RH
    J Neurosci; 1986 Nov; 6(11):3197-204. PubMed ID: 3490548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Basolateral membrane Cl- and K+ conductances of the dark-adapted chick retinal pigment epithelium.
    Gallemore RP; Hernandez E; Tayyanipour R; Fujii S; Steinberg RH
    J Neurophysiol; 1993 Oct; 70(4):1656-68. PubMed ID: 8283221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of hypoxia on potassium homeostasis and pigment epithelial cells in the cat retina.
    Linsenmeier RA; Steinberg RH
    J Gen Physiol; 1984 Dec; 84(6):945-70. PubMed ID: 6097640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hyperosmolarity-induced hyperpolarization of the membrane potential of the retinal pigment epithelium.
    Mukoh S; Kawasaki K; Yonemura D; Tanabe J
    Doc Ophthalmol; 1985 Oct; 60(4):369-74. PubMed ID: 3877621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Origin of the fast oscillation in the electroretinogram of the macaque.
    van Norren D; Heynen H
    Vision Res; 1986; 26(4):569-75. PubMed ID: 3739232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium.
    Joseph DP; Miller SS
    J Physiol; 1991 Apr; 435():439-63. PubMed ID: 1722821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Response properties of the toad retinal pigment epithelium.
    Griff ER
    Invest Ophthalmol Vis Sci; 1990 Nov; 31(11):2353-60. PubMed ID: 2173687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Colour dependence of the early receptor potential and late receptor potential in scallop distal photoreceptor.
    Cornwall MC; Gorman AL
    J Physiol; 1983 Jul; 340():307-34. PubMed ID: 6887052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of azide induced increases in the c-wave and standing potential of the intact cat eye.
    Linsenmeier RA; Steinberg RH
    Vision Res; 1987; 27(1):1-8. PubMed ID: 3617540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of hypoxic effects on the cat DC electroretinogram.
    Linsenmeier RA; Steinberg RH
    Invest Ophthalmol Vis Sci; 1986 Sep; 27(9):1385-94. PubMed ID: 3744728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modification by cyclic adenosine monophosphate of basolateral membrane chloride conductance in chick retinal pigment epithelium.
    Kuntz CA; Crook RB; Dmitriev A; Steinberg RH
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):422-33. PubMed ID: 8112990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acetazolamide-induced changes of the membrane potentials of the retinal pigment epithelial cell.
    Kawasaki K; Mukoh S; Yonemura D; Fujii S; Segawa Y
    Doc Ophthalmol; 1986 Nov; 63(4):375-81. PubMed ID: 3492349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Passive ionic properties of frog retinal pigment epithelium.
    Miller SS; Steinberg RH
    J Membr Biol; 1977 Sep; 36(4):337-72. PubMed ID: 302862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. K+ and Cl- transport mechanisms in bovine pigment epithelium that could modulate subretinal space volume and composition.
    Bialek S; Miller SS
    J Physiol; 1994 Mar; 475(3):401-17. PubMed ID: 8006825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-induced changes in photoreceptor membrane resistance and potential in Gecko retinas. I. Preparations treated to reduce lateral interactions.
    Pinto LH; Pak WL
    J Gen Physiol; 1974 Jul; 64(1):26-48. PubMed ID: 4837685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From sea lemons to c-waves.
    Marmor MF
    Cell Mol Neurobiol; 1983 Dec; 3(4):285-95. PubMed ID: 6325007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The delayed basolateral membrane hyperpolarization of the bovine retinal pigment epithelium: mechanism of generation.
    Bialek S; Joseph DP; Miller SS
    J Physiol; 1995 Apr; 484 ( Pt 1)(Pt 1):53-67. PubMed ID: 7602526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potassium transport of the frog retinal pigment epithelium: autoregulation of potassium activity in the subretinal space.
    la Cour M; Lund-Andersen H; Zeuthen T
    J Physiol; 1986 Jun; 375():461-79. PubMed ID: 2432225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light-induced changes in photoreceptor membrane resistance and potential in Gecko retinas. II. Preparations with active lateral interactions.
    Pinto LH; Pak WL
    J Gen Physiol; 1974 Jul; 64(1):49-69. PubMed ID: 4837686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct evidence for a basolateral membrane Cl- conductance in toad retinal pigment epithelium.
    Fujii S; Gallemore RP; Hughes BA; Steinberg RH
    Am J Physiol; 1992 Feb; 262(2 Pt 1):C374-83. PubMed ID: 1311500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.