BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 7154113)

  • 1. Comparative features of spinal neuronotrophic factors in fluids collected in vitro and in vivo.
    Manthorpe M; Longo FM; Varon S
    J Neurosci Res; 1982; 8(2-3):241-50. PubMed ID: 7154113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-derived proteins that rescue spinal motoneurons from cell death in the chick embryo: comparisons with target-derived and recombinant factors.
    Johnson JE; Wei YQ; Prevette D; Oppenheim RW
    J Neurobiol; 1995 Aug; 27(4):573-89. PubMed ID: 7561835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological studies of a putative avian muscle-derived neurotrophic factor that prevents naturally occurring motoneuron death in vivo.
    Oppenheim RW; Prevette D; Haverkamp LJ; Houenou L; Yin QW; McManaman J
    J Neurobiol; 1993 Aug; 24(8):1065-79. PubMed ID: 8409968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Torpedo electromotor system development: developmentally regulated neuronotrophic activities of electric organ tissue.
    Richardson GP; Rinschen B; Fox GQ
    J Comp Neurol; 1985 Jan; 231(3):339-52. PubMed ID: 3968242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the effects of glial cell line-derived neurotrophic factor on spinal cord and cortex cerebri grafts.
    Trok K; Almström S; Olson L
    J Pharmacol Exp Ther; 1996 Aug; 278(2):941-9. PubMed ID: 8768751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal cord neuronotrophic factors (SCNTFs): I. Bioassay of schwannoma and other conditioned media.
    Longo FM; Manthorpe M; Varon S
    Brain Res; 1982 Feb; 255(2):277-94. PubMed ID: 7055725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurite outgrowth from cerebral cortical neurons is promoted by medium conditioned over heart cells.
    Kligman D
    J Neurosci Res; 1982; 8(2-3):281-7. PubMed ID: 7154117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle-conditioned media and cAMP promote survival and neurite outgrowth of adult spinal cord motor neurons.
    Montoya G JV; Sutachan JJ; Chan WS; Sideris A; Blanck TJ; Recio-Pinto E
    Exp Neurol; 2009 Dec; 220(2):303-15. PubMed ID: 19747480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular requirements for survival of cultured avian and rodent dorsal root ganglionic neurons responding to different trophic factors.
    Skaper SD; Selak I; Varon S
    J Neurosci Res; 1982; 8(2-3):251-61. PubMed ID: 7154114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of insulin-like growth factors and corresponding binding proteins (IGFBP 1-6) in rat spinal cord and peripheral nerve after axonal injuries.
    Hammarberg H; Risling M; Hökfelt T; Cullheim S; Piehl F
    J Comp Neurol; 1998 Oct; 400(1):57-72. PubMed ID: 9762866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pigment epithelium-derived factor promotes the survival and differentiation of developing spinal motor neurons.
    Houenou LJ; D'Costa AP; Li L; Turgeon VL; Enyadike C; Alberdi E; Becerra SP
    J Comp Neurol; 1999 Sep; 412(3):506-14. PubMed ID: 10441236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol influences on the chick embryo spinal cord motor system: analyses of motoneuron cell death, motility, and target trophic factor activity and in vitro analyses of neurotoxicity and trophic factor neuroprotection.
    Heaton MB; Bradley DM
    J Neurobiol; 1995 Jan; 26(1):47-61. PubMed ID: 7714525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronotrophic factors: problems and perspectives.
    Varon S; Manthorpe M; Skaper SD; Adler R
    Prog Clin Biol Res; 1982; 79():225-42. PubMed ID: 7088966
    [No Abstract]   [Full Text] [Related]  

  • 14. Functional regeneration of sensory axons into the adult spinal cord.
    Ramer MS; Priestley JV; McMahon SB
    Nature; 2000 Jan; 403(6767):312-6. PubMed ID: 10659850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF.
    Oppenheim RW; Houenou LJ; Johnson JE; Lin LF; Li L; Lo AC; Newsome AL; Prevette DM; Wang S
    Nature; 1995 Jan; 373(6512):344-6. PubMed ID: 7830769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular composition of long-term human spinal cord- and forebrain-derived neurosphere cultures.
    Piao JH; Odeberg J; Samuelsson EB; Kjaeldgaard A; Falci S; Seiger A; Sundström E; Akesson E
    J Neurosci Res; 2006 Aug; 84(3):471-82. PubMed ID: 16721767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Müller glia factors induce survival and neuritogenesis of peripheral and central neurons.
    de Melo Reis RA; Cabral-da-Silva Me; de Mello FG; Taylor JS
    Brain Res; 2008 Apr; 1205():1-11. PubMed ID: 18353289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of GDNF on primary culture of spinal cord neurons].
    Chen ZY; Huang AJ; Bao X; Lu CL
    Shi Yan Sheng Wu Xue Bao; 2000 Sep; 33(3):237-44. PubMed ID: 12549042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium-induced release of neuronotoxic activity by astrocytes.
    Lefebvre PP; Rogister B; Delree P; Leprince P; Selak I; Moonen G
    Brain Res; 1987 Jun; 413(1):120-8. PubMed ID: 3594251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein from chromaffin granules promotes survival of mesencephalic dopaminergic neurons by an EGF-receptor ligand-mediated mechanism.
    Krieglstein K; Unsicker K
    J Neurosci Res; 1997 Apr; 48(1):18-30. PubMed ID: 9086178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.