BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7154127)

  • 1. Regulation of the proliferation of embryonic chick leptomeningeal cells in vitro by both contact inhibition and co-culture with CNS neurons.
    Partlow LM; Hanson GR; Iversen PL
    J Neurosci Res; 1982; 8(2-3):523-34. PubMed ID: 7154127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of normal human brain cultures. Evidence for the outgrowth of leptomeningeal cells.
    Rutka JT; Kleppe-Hoifodt H; Emma DA; Giblin JR; Dougherty DV; McCulloch JR; De Armond SJ; Rosenblum ML
    Lab Invest; 1986 Jul; 55(1):71-85. PubMed ID: 3724065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal stimulation of non-neuronal (glial) cell proliferation: lack of specificity between different regions of the nervous system.
    Hanson GR; Partlow LM; Iversen PL
    Brain Res; 1982 Apr; 255(4):547-55. PubMed ID: 7074362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of gamma-glutamyl transpeptidase activity in primary cultures of neurones and glial cells derived from the cerebral hemispheres of chick embryos.
    Jankásková B; Lisý V; Stastný F
    Physiol Bohemoslov; 1988; 37(1):19-25. PubMed ID: 2897698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of two factors affecting the proliferation of non-neuronal (glial) cells in vitro.
    Hanson GR; Partlow LM
    Brain Res; 1980 Jun; 192(2):371-81. PubMed ID: 7378795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol effects on nitric oxide production in cerebral pial cultures.
    Shih CL; Chi SI; Chiu TH; Sun GY; Lin TN
    Alcohol Clin Exp Res; 2001 Apr; 25(4):612-8. PubMed ID: 11329504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression in glial cells derived from chick embryo cerebral hemispheres at an advanced stage of development.
    Kentroti S; Vernadakis A
    J Neurosci Res; 1997 Feb; 47(3):322-31. PubMed ID: 9039654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tenascin in the injured rat optic nerve and in non-neuronal cells in vitro: potential role in neural repair.
    Ajemian A; Ness R; David S
    J Comp Neurol; 1994 Feb; 340(2):233-42. PubMed ID: 7515397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of transforming growth factor-beta 1 and -beta 2 on Schwann cell proliferation on neurites.
    Guénard V; Rosenbaum T; Gwynn LA; Doetschman T; Ratner N; Wood PM
    Glia; 1995 Apr; 13(4):309-18. PubMed ID: 7615339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures.
    Booher J; Sensenbrenner M
    Neurobiology; 1972; 2(3):97-105. PubMed ID: 4572654
    [No Abstract]   [Full Text] [Related]  

  • 11. Human Schwann cells in vitro. I. Failure to differentiate and support neuronal health under co-culture conditions that promote full function of rodent cells.
    Morrissey TK; Bunge RP; Kleitman N
    J Neurobiol; 1995 Oct; 28(2):171-89. PubMed ID: 8537823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinase C-epsilon is a developmentally regulated, neuronal isoform in the chick embryo central nervous system.
    Mangoura D; Sogos V; Dawson G
    J Neurosci Res; 1993 Aug; 35(5):488-98. PubMed ID: 8377222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro.
    Hearn CJ; Murphy M; Newgreen D
    Dev Biol; 1998 May; 197(1):93-105. PubMed ID: 9578621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secretory products of central nervous system glial cells induce Schwann cell proliferation and protect from cytokine-mediated death.
    Lisak RP; Bealmear B; Nedelkoska L; Benjamins JA
    J Neurosci Res; 2006 Jun; 83(8):1425-31. PubMed ID: 16583376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuron-Schwann cell signals are conserved across species: purification and characterization of embryonic chicken Schwann cells.
    Bhattacharyya A; Brackenbury R; Ratner N
    J Neurosci Res; 1993 May; 35(1):1-13. PubMed ID: 7685394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5A11 antigen is a cell recognition molecule which is involved in neuronal-glial interactions in avian neural retina.
    Fadool JM; Linser PJ
    Dev Dyn; 1993 Apr; 196(4):252-62. PubMed ID: 8219348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal and nonneuronal expression of neurotrophins and their receptors in sensory and sympathetic ganglia suggest new intercellular trophic interactions.
    Wetmore C; Olson L
    J Comp Neurol; 1995 Feb; 353(1):143-59. PubMed ID: 7714245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and partial characterization of highly purified primary cultures of neurons and non-neuronal (glial) cells from embryonic chick cerebral hemispheres and several other regions of the nervous system.
    Hanson GR; Iversen PL; Partlow LM
    Brain Res; 1982 Apr; 255(4):529-45. PubMed ID: 7074361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serotonin-activated alpha 2-macroglobulin inhibits neurite outgrowth and survival of embryonic sensory and cerebral cortical neurons.
    Liebl DJ; Koo PH
    J Neurosci Res; 1993 Jun; 35(2):170-82. PubMed ID: 7686585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effect of a synthetic tripeptide nervous tissue cultured in vitro].
    Lindner G; Grosse G; Halle W; Henklein P
    Z Mikrosk Anat Forsch; 1979; 93(5):820-8. PubMed ID: 317547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.