These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 7155142)

  • 1. [Derivation of rate equations for the reactions catalysed by oligomeric enzymes].
    Popova SV; Gol'dshteĭn BN
    Mol Biol (Mosk); 1982; 16(6):1271-8. PubMed ID: 7155142
    [No Abstract]   [Full Text] [Related]  

  • 2. [Kinetic model of the action of oligomeric enzymes using phosphofructokinase as an example. II. General formulation of the hierarchical model].
    Cherepanov DA
    Mol Biol (Mosk); 1988; 22(3):822-9. PubMed ID: 2972916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Generalization of the Monod-Wyman-Changeux model for the case of multisubstrate reactions].
    Popova SV; Sel'kov EE
    Mol Biol (Mosk); 1976; 10(5):1116-26. PubMed ID: 1053074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor biophysics and biochemistry. Enzymes.
    Hammes GG
    Neurosci Res Program Bull; 1973 Jun; 11(3):164-75. PubMed ID: 4268558
    [No Abstract]   [Full Text] [Related]  

  • 5. Dynamic compartmentation in soluble enzyme systems.
    Friedrich P
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(3):159-73. PubMed ID: 4422122
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on the rate of diffusion-controlled reactions of enzymes. Spatial factor and force field factor.
    Kuo-chen C; Shou-ping J
    Sci Sin; 1974 Oct; 27(5):664-80. PubMed ID: 4219062
    [No Abstract]   [Full Text] [Related]  

  • 7. A theoretical model for calculation of the rate constant of enzyme-substrate complex formation. 3. Effect of intermolecular forces and diffusion motion of the enzyme molecule on the rate constant.
    Somogyi B
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(3):185-96. PubMed ID: 4419764
    [No Abstract]   [Full Text] [Related]  

  • 8. [Generalized form of kinetic equations of enzymatic catalysis from the calculation of protein macromolecular relaxation].
    Sidorenko NP; Deshcherevskiĭ VI
    Biofizika; 1970; 15(5):785-92. PubMed ID: 5476271
    [No Abstract]   [Full Text] [Related]  

  • 9. Slow transitions and hysteretic behavior in enzymes.
    Frieden C
    Annu Rev Biochem; 1979; 48():471-89. PubMed ID: 382990
    [No Abstract]   [Full Text] [Related]  

  • 10. The kinetics of enzymatic reactions with several intermediate complexes.
    Gordii SM; Ostapov YG
    Mol Biol; 1974 Jan; 7(4):381-5. PubMed ID: 4824807
    [No Abstract]   [Full Text] [Related]  

  • 11. Subunit interactions in enzyme catalysis. Kinetic models for one-substrate polymeric enzymes.
    Ricard J; Mouttet C; Nari J
    Eur J Biochem; 1974 Feb; 41(3):479-97. PubMed ID: 4817559
    [No Abstract]   [Full Text] [Related]  

  • 12. Network thermodynamic analysis of enzyme-catalysed reactions.
    Yashonath S; Srivastava RC
    Indian J Biochem Biophys; 1981 Jun; 18(3):211-4. PubMed ID: 7309098
    [No Abstract]   [Full Text] [Related]  

  • 13. Cooperativity in two-substrate reactions.
    Gol'dshtein BN; Vol'kenshtein MV
    Mol Biol; 1972 Jan; 5(4):441-9. PubMed ID: 4670414
    [No Abstract]   [Full Text] [Related]  

  • 14. A slide rule for deriving the rate equations of enzyme catalysed reactions with mechanisms involving up to six enzyme-containing intermediates.
    Ainsworth S
    J Theor Biol; 1974 Nov; 48(1):141-7. PubMed ID: 4456035
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanisms of irreversible modifications of isomerisable and dissociable-associable oligomeric proteins.
    Fischer E; Arányi P; Keleti T
    Acta Biol Med Ger; 1973; 31(2):153-74. PubMed ID: 4774051
    [No Abstract]   [Full Text] [Related]  

  • 16. [Transformation of enzyme graphs having the form of a multidimensional parallelepiped].
    Popova SV
    Biofizika; 1981; 26(6):973-8. PubMed ID: 7317505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How enzymes work: analysis by modern rate theory and computer simulations.
    Garcia-Viloca M; Gao J; Karplus M; Truhlar DG
    Science; 2004 Jan; 303(5655):186-95. PubMed ID: 14716003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudo-Michaelian kinetics and flip-flop type mechanisms.
    Gache C
    FEBS Lett; 1974 Dec; 49(1):5-9. PubMed ID: 4442593
    [No Abstract]   [Full Text] [Related]  

  • 19. The analysis of progress curves for enzyme-catalysed reactions by non-linear regression.
    Duggleby RG; Morrison JF
    Biochim Biophys Acta; 1977 Apr; 481(2):297-312. PubMed ID: 870047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivation and initial velocity and isotope exchange rate equations.
    Huang CY
    Methods Enzymol; 1979; 63():54-84. PubMed ID: 502869
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.