BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 7155667)

  • 21. The aging process of human neonatal erythrocytes.
    Matovcik LM; Chiu D; Lubin B; Mentzer WC; Lane PA; Mohandas N; Schrier SL
    Pediatr Res; 1986 Nov; 20(11):1091-6. PubMed ID: 3797102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Group B Streptococcus impairs erythrocyte deformability in neonates more than in adults.
    Pöschl JM; Ruef P; Schnauffer M; Pohl S; Sonntag HG; Linderkamp O
    Arch Dis Child Fetal Neonatal Ed; 1996 May; 74(3):F187-190. PubMed ID: 8777682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of extracorporeal circulation and hemoseparation on red cell deformability and membrane proteins in coronary artery disease.
    Lohrer RM; Trammer AR; Dietrich W; Hagl S; Linderkamp O
    J Thorac Cardiovasc Surg; 1990 Apr; 99(4):735-40. PubMed ID: 2319797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fetal hemorheology in normal pregnancy and severe preeclampsia.
    Heilmann L; Rath W; Pollow K
    Clin Hemorheol Microcirc; 2005; 32(3):183-90. PubMed ID: 15851837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Derivated fetal haemoglobin as a marker for red cell age in the human fetus reflecting stimulated or impaired red blood cell production.
    Huisman M; Egberts J; van Loon J
    Prenat Diagn; 2001 Jul; 21(7):523-8. PubMed ID: 11494284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of oxidant susceptibility of red blood cells in various species based on cell deformability.
    Simmonds MJ; Meiselman HJ; Marshall-Gradisnik SM; Pyne M; Kakanis M; Keane J; Brenu E; Christy R; Baskurt OK
    Biorheology; 2011; 48(5):293-304. PubMed ID: 22433570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alterations in red blood cell volume and hemoglobin concentration, viscoelastic properties, and mechanical fragility caused by continuous flow pumping in calves.
    Yokoyama N; Sakota D; Nagaoka E; Takatani S
    Artif Organs; 2011 Aug; 35(8):791-9. PubMed ID: 21843294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of intracellular organic phosphates on erythrocyte deformability].
    Suzuki Y
    Nihon Seirigaku Zasshi; 1990; 52(2):36-46. PubMed ID: 2332835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular dehydration and immunoglobulin binding in senescent neonatal erythrocytes.
    Lane PA; Galili U; Iarocci TA; Shew RL; Mentzer WC
    Pediatr Res; 1988 Mar; 23(3):288-92. PubMed ID: 3353175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decreased mechanical stability of neonatal red cell membrane quantified by measurement of the elastic area compressibility modulus.
    Meyburg J; Böhler T; Linderkamp O
    Clin Hemorheol Microcirc; 2000; 22(1):67-73. PubMed ID: 10711823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biorheological and metabolic dysfunctions of density-fractionated erythrocytes in diabetics with peripheral vascular disease.
    Goebel KM; Lanser KG
    Biomed Biochim Acta; 1983; 42(11-12):S102-6. PubMed ID: 6675677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical damage of red blood cells by rotary blood pumps: selective destruction of aged red blood cells and subhemolytic trauma.
    Sakota D; Sakamoto R; Sobajima H; Yokoyama N; Waguri S; Ohuchi K; Takatani S
    Artif Organs; 2008 Oct; 32(10):785-91. PubMed ID: 18959667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Erythrocyte deformability responses to intermittent and continuous subhemolytic shear stress.
    Simmonds MJ; Atac N; Baskurt OK; Meiselman HJ; Yalcin O
    Biorheology; 2014; 51(2-3):171-85. PubMed ID: 24948378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shear stress-induced improvement of red blood cell deformability.
    Meram E; Yilmaz BD; Bas C; Atac N; Yalcin O; Meiselman HJ; Baskurt OK
    Biorheology; 2013; 50(3-4):165-76. PubMed ID: 23863281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rheological studies of erythrocyte-endothelial cell interactions in sickle cell disease.
    Barabino GA; McIntire LV; Eskin SG; Sears DA; Udden M
    Prog Clin Biol Res; 1987; 240():113-27. PubMed ID: 3615482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Red blood cell deformability and aggregation behaviour in different animal species.
    Plasenzotti R; Stoiber B; Posch M; Windberger U
    Clin Hemorheol Microcirc; 2004; 31(2):105-11. PubMed ID: 15310945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of hemoglobin oxygenation level on red blood cell deformability and aggregation parameters.
    Uyuklu M; Meiselman HJ; Baskurt OK
    Clin Hemorheol Microcirc; 2009; 41(3):179-88. PubMed ID: 19276515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative stress in newborn erythrocytes.
    Shahal Y; Bauminger ER; Zmora E; Katz M; Mazor D; Horn S; Meyerstein N
    Pediatr Res; 1991 Feb; 29(2):119-22. PubMed ID: 2014146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of density-fractionated RBC deformability by nitric oxide.
    Bor-Kucukatay M; Meiselman HJ; Başkurt OK
    Clin Hemorheol Microcirc; 2005; 33(4):363-7. PubMed ID: 16317245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Red blood cell (RBC) deformability, RBC aggregability and tissue oxygenation in hypertension.
    Cicco G; Pirrelli A
    Clin Hemorheol Microcirc; 1999; 21(3-4):169-77. PubMed ID: 10711739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.