BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 7155900)

  • 1. Molecular structure of (m5 dC-dG)3: the role of the methyl group on 5-methyl cytosine in stabilizing Z-DNA.
    Fujii S; Wang AH; van der Marel G; van Boom JH; Rich A
    Nucleic Acids Res; 1982 Dec; 10(23):7879-92. PubMed ID: 7155900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular structure of d(m5CGTAm5CG): TA pairs in Z-DNA and the consequences.
    Hakoshima T; Wang AH; van Boom JH; Rich A
    Nucleic Acids Symp Ser; 1983; (12):213-6. PubMed ID: 6664864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AT base pairs are less stable than GC base pairs in Z-DNA: the crystal structure of d(m5CGTAm5CG).
    Wang AH; Hakoshima T; van der Marel G; van Boom JH; Rich A
    Cell; 1984 May; 37(1):321-31. PubMed ID: 6722876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and thermodynamics of nonalternating C.G base pairs in Z-DNA: the 1.3-A crystal structure of the asymmetric hexanucleotide d(m5CGGGm5CG).d(m5CGCCm5CG).
    Schroth GP; Kagawa TF; Ho PS
    Biochemistry; 1993 Dec; 32(49):13381-92. PubMed ID: 8257675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tetramer d(CpGpCpG) crystallizes as a left-handed double helix.
    Crawford JL; Kolpak FJ; Wang AH; Quigley GJ; van Boom JH; van der Marel G; Rich A
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):4016-20. PubMed ID: 6933447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of N4-methylcytosine.guanosine base-pairs in the synthetic hexanucleotide d(CGCGm4CG).
    Cervi AR; Guy A; Leonard GA; Téoule R; Hunter WN
    Nucleic Acids Res; 1993 Dec; 21(24):5623-9. PubMed ID: 8284207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of Z-DNA by demethylation of thymine bases: 1.3-A single-crystal structure of d(m5CGUAm5CG).
    Zhou GW; Ho PS
    Biochemistry; 1990 Aug; 29(31):7229-36. PubMed ID: 2207101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between the Z-type DNA duplex and 1,3-propanediamine: crystal structure of d(CACGTG)2 at 1.2 A resolution.
    Narayana N; Shamala N; Ganesh KN; Viswamitra MA
    Biochemistry; 2006 Jan; 45(4):1200-11. PubMed ID: 16430216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution conformation of the (-)-cis-anti-benzo[a]pyrenyl-dG adduct opposite dC in a DNA duplex: intercalation of the covalently attached BP ring into the helix with base displacement of the modified deoxyguanosine into the major groove.
    Cosman M; Hingerty BE; Luneva N; Amin S; Geacintov NE; Broyde S; Patel DJ
    Biochemistry; 1996 Jul; 35(30):9850-63. PubMed ID: 8703959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of d(CACGTG), a Z-DNA hexamer containing AT base pairs.
    Coll M; Fita I; Lloveras J; Subirana JA; Bardella F; Huynh-Dinh T; Igolen J
    Nucleic Acids Res; 1988 Sep; 16(17):8695-705. PubMed ID: 3419929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytosine methylation can induce local distortions in the structure of duplex DNA.
    Hodges-Garcia Y; Hagerman PJ
    Biochemistry; 1992 Aug; 31(33):7595-9. PubMed ID: 1510946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Z-DNA structure of a modified DNA hexamer at 1.4-A resolution: aminohexyl-5'-d(pCpGp[br5C]pGpCpG).
    Jean YC; Gao YG; Wang AH
    Biochemistry; 1993 Jan; 32(1):381-8. PubMed ID: 8418858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylation of cytosine in the 5-position alters the structural and energetic properties of the supercoil-induced Z-helix and of B-Z junctions.
    Zacharias W; O'Connor TR; Larson JE
    Biochemistry; 1988 Apr; 27(8):2970-8. PubMed ID: 2840954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and crystal structure of d(CGCGmo4CG): N4-methoxycytosine.guanine base-pairs in Z-DNA.
    Van Meervelt L; Moore MH; Lin PK; Brown DM; Kennard O
    J Mol Biol; 1990 Dec; 216(3):773-81. PubMed ID: 2258939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and physical characterization of DNA fragments containing N4-methylcytosine and 5-methylcytosine.
    Butkus V; Klimasauskas S; Petrauskiene L; Maneliene Z; Janulaitis A; Minchenkova LE; Schyolkina AK
    Nucleic Acids Res; 1987 Oct; 15(20):8467-78. PubMed ID: 3671089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of 5-methylcytosine on the structure and stability of DNA. Formation of triple-stranded concatenamers by overlapping oligonucleotides.
    Xodo LE; Alunni-Fabbroni M; Manzini G
    J Biomol Struct Dyn; 1994 Feb; 11(4):703-20. PubMed ID: 8204209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-dependent molecular dynamics and restrained X-ray refinement simulations of a Z-DNA hexamer.
    Westhof E; Chevrier B; Gallion SL; Weiner PK; Levy RM
    J Mol Biol; 1986 Oct; 191(4):699-712. PubMed ID: 3806679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G; Brank A; Christman JK; Goddard A; Alvarez E; Ford H; Marquez VE; Marasco CJ; Sufrin JR; O'gara M; Cheng X
    J Mol Biol; 1999 Feb; 285(5):2021-34. PubMed ID: 9925782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration and recognition of methylated CpG steps in DNA.
    Mayer-Jung C; Moras D; Timsit Y
    EMBO J; 1998 May; 17(9):2709-18. PubMed ID: 9564052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the self-complementary 5'-purine start decamer d(GCGCGCGCGC) in the Z-DNA conformation. I.
    Ban C; Ramakrishnan B; Sundaralingam M
    Biophys J; 1996 Sep; 71(3):1215-21. PubMed ID: 8873995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.