These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 7156399)

  • 1. Growth and maturation of the rat corticospinal tract.
    Jones EG; Schreyer DJ; Wise SP
    Prog Brain Res; 1982; 57():361-79. PubMed ID: 7156399
    [No Abstract]   [Full Text] [Related]  

  • 2. Immunohistochemical detection of calcium/calmodulin-dependent protein kinase II in the spinal cord of the rat and monkey with special reference to the corticospinal tract.
    Terashima T; Ochiishi T; Yamauchi T
    J Comp Neurol; 1994 Feb; 340(4):469-79. PubMed ID: 8006213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extension of the critical period for developmental plasticity of the corticospinal pathway.
    Bregman BS; Kunkel-Bagden E; McAtee M; O'Neill A
    J Comp Neurol; 1989 Apr; 282(3):355-70. PubMed ID: 2715387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontogenesis of the rat corticospinal tract. Normal events and effects of intra-uterine neurosurgical lesions.
    DeMyer W
    Arch Neurol; 1967 Feb; 16(2):203-11. PubMed ID: 4163497
    [No Abstract]   [Full Text] [Related]  

  • 5. Ultrastructure of fetal spinal cord and cortex implants into adult rat spinal cord.
    Bernstein JJ; Patel U; Kelemen M; Jefferson M; Turtil S
    J Neurosci Res; 1984; 11(4):359-72. PubMed ID: 6748109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extension and regeneration of corticospinal axons after early spinal injury and the maintenance of corticospinal topography.
    Bates CA; Stelzner DJ
    Exp Neurol; 1993 Sep; 123(1):106-17. PubMed ID: 8405271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Descending pathways to the spinal cord, III: Sites of origin of the corticospinal tract.
    Nudo RJ; Masterton RB
    J Comp Neurol; 1990 Jun; 296(4):559-83. PubMed ID: 2113540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic expression patterns of Robo (Robo1 and Robo2) in the developing murine central nervous system.
    Sundaresan V; Mambetisaeva E; Andrews W; Annan A; Knöll B; Tear G; Bannister L
    J Comp Neurol; 2004 Jan; 468(4):467-81. PubMed ID: 14689480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outgrowth of the pyramidal tract in the rat cervical spinal cord: growth cone ultrastructure and guidance.
    Gorgels TG
    J Comp Neurol; 1991 Apr; 306(1):95-116. PubMed ID: 2040732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropeptide receptors in developing and adult rat spinal cord: an in vitro quantitative autoradiography study of calcitonin gene-related peptide, neurokinins, mu-opioid, galanin, somatostatin, neurotensin and vasoactive intestinal polypeptide receptors.
    Kar S; Quirion R
    J Comp Neurol; 1995 Apr; 354(2):253-81. PubMed ID: 7782502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection.
    Clowry GJ; Davies BM; Upile NS; Gibson CL; Bradley PM
    Eur J Neurosci; 2004 Nov; 20(10):2555-66. PubMed ID: 15548199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of the corticospinal tract following midthoracic spinal injury in the postnatal rat.
    Bernstein DR; Stelzner DJ
    J Comp Neurol; 1983 Dec; 221(4):382-400. PubMed ID: 6662981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topical versus diffuse organization of the corticospinal tract in the cat.
    Armand J
    J Physiol (Paris); 1978; 74(3):227-30. PubMed ID: 722597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The corticospinal tract of the wallaby (Setonix brachyurus).
    Watson CR
    J Anat; 1970 Jan; 106(Pt 1):205. PubMed ID: 5413634
    [No Abstract]   [Full Text] [Related]  

  • 15. Postnatal development of the ipsilateral corticospinal component in rat spinal cord: a light and electron microscopic anterograde HRP study.
    Joosten EA; Schuitman RL; Vermelis ME; Dederen PJ
    J Comp Neurol; 1992 Dec; 326(1):133-46. PubMed ID: 1479066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures.
    Kamei N; Tanaka N; Oishi Y; Hamasaki T; Nakanishi K; Sakai N; Ochi M
    Spine (Phila Pa 1976); 2007 May; 32(12):1272-8. PubMed ID: 17515814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L1 CAM expression is increased surrounding the lesion site in rats with complete spinal cord transection as neonates.
    Kubasak MD; Hedlund E; Roy RR; Carpenter EM; Edgerton VR; Phelps PE
    Exp Neurol; 2005 Aug; 194(2):363-75. PubMed ID: 16022864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of specificity in corticospinal connections by axon collaterals branching selectively into appropriate spinal targets.
    Kuang RZ; Kalil K
    J Comp Neurol; 1994 Jun; 344(2):270-82. PubMed ID: 8077461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electron microscopic study of myelination of pyramidal fibres at the level of the pyramidal decussation in the human fetus.
    Wózniak W; O'Rahilly R
    J Hirnforsch; 1982; 23(3):331-42. PubMed ID: 7130683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hydrocephalus on neuronal migration and maturation.
    Sobkowiak CA
    Eur J Pediatr Surg; 1992 Dec; 2 Suppl 1():7-11. PubMed ID: 1489758
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.