These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7157836)

  • 21. Antiasthmatic effects of onion extracts--detection of benzyl- and other isothiocyanates (mustard oils) as antiasthmatic compounds of plant origin.
    Dorsch W; Adam O; Weber J; Ziegeltrum T
    Eur J Pharmacol; 1984 Dec; 107(1):17-24. PubMed ID: 6526069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolism in the rat of a model xenobiotic plant metabolite S-benzyl-N-malonyl-L-cysteine.
    Richardson KA; Edwards VT; Jones BC; Hutson DH
    Xenobiotica; 1991 Mar; 21(3):371-82. PubMed ID: 1862660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The metabolism and excretion of 14C-styrene oxide-glutathione adducts administered to the winter flounder, Pseudopleuronectes americanus, a marine teleost. Identification of the corresponding S-cysteine derivatives as major urinary metabolites.
    Yagen B; Foureman GL; Ben-Zvi Z; Ryan AJ; Hernandez O; Cox RH; Bend JR
    Drug Metab Dispos; 1984; 12(4):389-95. PubMed ID: 6148203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic coordination of liver and kidney in mercapturic acid biosynthesis in vivo.
    Inoue M; Okajima K; Morino Y
    Hepatology; 1982; 2(3):311-6. PubMed ID: 7076112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolism as a determinant of species susceptibility to 2,3,5-(triglutathion-S-yl)hydroquinone-mediated nephrotoxicity. The role of N-acetylation and N-deacetylation.
    Lau SS; Kleiner HE; Monks TJ
    Drug Metab Dispos; 1995 Oct; 23(10):1136-42. PubMed ID: 8654203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The formation of mercapturic acids. 3. N-Acetylation of S-substituted cysteines in the rabbit, rat and guinea pig.
    BRAY HG; FRANKLIN TJ; JAMES SP
    Biochem J; 1959 Nov; 73(3):465-73. PubMed ID: 13804052
    [No Abstract]   [Full Text] [Related]  

  • 27. Bioavailability and metabolism of benzyl glucosinolate in humans consuming Indian cress (Tropaeolum majus L.).
    Platz S; Kühn C; Schiess S; Schreiner M; Kemper M; Pivovarova O; Pfeiffer AF; Rohn S
    Mol Nutr Food Res; 2016 Mar; 60(3):652-60. PubMed ID: 26610401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for the formation of a novel glutathione conjugate in the metabolism of an aromatic amine derivative.
    Hutson DH; Logan CJ; Regan PD
    Drug Metab Dispos; 1984; 12(4):523-4. PubMed ID: 6148223
    [No Abstract]   [Full Text] [Related]  

  • 29. Glutathione conjugation and conversion to mercapturic acids can occur as an intrahepatic process.
    Hinchman CA; Ballatori N
    J Toxicol Environ Health; 1994 Apr; 41(4):387-409. PubMed ID: 8145281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mercapturic acid formation in the marmoset (Callithrix jacchus).
    Hall BE; James SP
    Xenobiotica; 1986 Jul; 16(7):609-14. PubMed ID: 3751115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effect of various compounds related to naphthyl isothiocyanate on the guinea pig liver. IV. Benzyl thiocyanate].
    MAZZANTI L
    Boll Soc Ital Biol Sper; 1955 Jun; 31(6):629-30. PubMed ID: 13269548
    [No Abstract]   [Full Text] [Related]  

  • 32. Metabolism of styrene oxide in the rat and guinea pig.
    Nakatsu K; Hugenroth S; Sheng LS; Horning EC; Horning MG
    Drug Metab Dispos; 1983; 11(5):463-70. PubMed ID: 6138232
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The biochemistry of aromatic amines. The metabolism of 2-naphthylamine and 2-naphthylhydroxylamine derivatives.
    Boyland E; Manson D
    Biochem J; 1966 Oct; 101(1):84-102. PubMed ID: 5971797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolism of L-cysteine S-conjugates and N-(trideuteroacetyl)-L-cysteine S-conjugates of four fluoroethylenes in the rat. Role of balance of deacetylation and acetylation in relation to the nephrotoxicity of mercapturic acids.
    Commandeur JN; Stijntjes GJ; Wijngaard J; Vermeulen NP
    Biochem Pharmacol; 1991 Jun; 42(1):31-8. PubMed ID: 2069595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The formation of mercapturic acids. 4. Deacetylation of mercapturic acids by the rabbit, rat and guinea pig.
    BRAY HG; JAMES SP
    Biochem J; 1960 Feb; 74(2):394-7. PubMed ID: 13804053
    [No Abstract]   [Full Text] [Related]  

  • 36. Phenylalkyl isothiocyanate-cysteine conjugates as glutathione S-transferase stimulating agents.
    Zheng GQ; Kenney PM; Lam LK
    J Med Chem; 1992 Jan; 35(1):185-8. PubMed ID: 1732527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial degradation of benzyl isothiocyanate.
    Tang CS; Bhothipaksa K; Frank HA
    Appl Microbiol; 1972 Jun; 23(6):1145-8. PubMed ID: 4557564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mercapturic acid formation in cultured opossum kidney cells.
    Golenhofen N; Heuner A; Schwegler JS; Silbernagl S
    Ren Physiol Biochem; 1995; 18(4):191-7. PubMed ID: 7481070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hepato-renal cooperation in biotransformation, membrane transport, and elimination of cysteine S-conjugates of xenobiotics.
    Inoue M; Okajima K; Morino Y
    J Biochem; 1984 Jan; 95(1):247-54. PubMed ID: 6706912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolism of 1-(3-trifluoromethylphenyl)-3-(2-hydroxyethyl) quinazoline-2,4(1H,3H)-dione (H-88). I. Species differences in metabolism.
    Kodama R; Yano T; Furukawa K; Noda K; Ide H
    Xenobiotica; 1975 Jan; 5(1):39-48. PubMed ID: 1080313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.