These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7158662)

  • 1. The morphogenetic triangle: a new conceptual tool for application to problems in dental morphogenesis.
    Keene HJ
    Am J Phys Anthropol; 1982 Nov; 59(3):281-7. PubMed ID: 7158662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New approach to quantifying developmental variation in the dentition using serial microtomographic imaging.
    Avishai G; Müller R; Gabet Y; Bab I; Zilberman U; Smith P
    Microsc Res Tech; 2004 Dec; 65(6):263-9. PubMed ID: 15662618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression patterns of bone morphogenetic proteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation.
    Aberg T; Wozney J; Thesleff I
    Dev Dyn; 1997 Dec; 210(4):383-96. PubMed ID: 9415424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing human tooth length between birth and 5.4 years.
    Liversidge HM; Dean MC; Molleson TI
    Am J Phys Anthropol; 1993 Mar; 90(3):307-13. PubMed ID: 8460654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A histological reconstruction of dental development in the common chimpanzee, Pan troglodytes.
    Reid DJ; Schwartz GT; Dean C; Chandrasekera MS
    J Hum Evol; 1998; 35(4-5):427-48. PubMed ID: 9774504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue contributions to sex and race: differences in tooth crown size of deciduous molars.
    Harris EF; Hicks JD; Barcroft BD
    Am J Phys Anthropol; 2001 Jul; 115(3):223-37. PubMed ID: 11424074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human deciduous mandibular molar incremental enamel development.
    Mahoney P
    Am J Phys Anthropol; 2011 Feb; 144(2):204-14. PubMed ID: 20740658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tooth development in a scincid lizard, Chalcides viridanus (Squamata), with particular attention to enamel formation.
    Delgado S; Davit-Béal T; Allizard F; Sire JY
    Cell Tissue Res; 2005 Jan; 319(1):71-89. PubMed ID: 15592752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in enamel development of South African fossil hominids.
    Lacruz RS; Rozzi FR; Bromage TG
    J Hum Evol; 2006 Dec; 51(6):580-90. PubMed ID: 16999985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variations in growth of the enamel crown in human teeth and a possible relationship between growth and enamel structure.
    Shellis RP
    Arch Oral Biol; 1984; 29(9):697-705. PubMed ID: 6594102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Down syndrome on the dimensions of dental crowns and tissues.
    Bell E; Townsend G; Wilson D; Kieser J; Hughes T
    Am J Hum Biol; 2001; 13(5):690-8. PubMed ID: 11505477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of periodic markings in enamel to obtain information on tooth growth.
    Shellis RP
    J Hum Evol; 1998; 35(4-5):387-400. PubMed ID: 9774501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method of calculating human deciduous crown formation times and of estimating the chronological ages of stressful events occurring during deciduous enamel formation.
    Birch W; Dean MC
    J Forensic Leg Med; 2014 Feb; 22():127-44. PubMed ID: 24485438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced tooth size in 45,X (Turner syndrome) females.
    Townsend G; Jensen BL; Alvesalo L
    Am J Phys Anthropol; 1984 Dec; 65(4):367-71. PubMed ID: 6524618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene deployment for tooth replacement in the rainbow trout (Oncorhynchus mykiss): a developmental model for evolution of the osteichthyan dentition.
    Fraser GJ; Berkovitz BK; Graham A; Smith MM
    Evol Dev; 2006; 8(5):446-57. PubMed ID: 16925680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of activin/bone morphogenetic protein signaling by follistatin is required for the morphogenesis of mouse molar teeth.
    Wang XP; Suomalainen M; Jorgez CJ; Matzuk MM; Wankell M; Werner S; Thesleff I
    Dev Dyn; 2004 Sep; 231(1):98-108. PubMed ID: 15305290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and function of FGFs-4, -8, and -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis.
    Kettunen P; Thesleff I
    Dev Dyn; 1998 Mar; 211(3):256-68. PubMed ID: 9520113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dental field theory: an application to primate evolution.
    Henderson AM; Greene DL
    J Dent Res; 1975; 54(2):344-50. PubMed ID: 1054346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the dentition: four-dimensional visualization and open questions concerning the morphogenesis of tooth form and occlusion.
    Radlanski RJ
    Orthod Craniofac Res; 2003; 6 Suppl 1():82-8. PubMed ID: 14606539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related changes in tooth enamel as measured by electron microscopy: implications for porcelain laminate veneers.
    Atsu SS; Aka PS; Kucukesmen HC; Kilicarslan MA; Atakan C
    J Prosthet Dent; 2005 Oct; 94(4):336-41. PubMed ID: 16198170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.