These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 7159102)
1. S'2-P'2 interaction and the trypsin anilide hydrolysis. Christova E; Petkov DD; Stoineva I Arch Biochem Biophys; 1982 Oct; 218(2):626-9. PubMed ID: 7159102 [No Abstract] [Full Text] [Related]
2. Nucleophile specificity in chymotrypsin peptide synthesis. Petkov DD; Stoineva I Biochem Biophys Res Commun; 1984 Jan; 118(1):317-23. PubMed ID: 6696760 [TBL] [Abstract][Full Text] [Related]
3. Detection of a tetrahedral intermediate in the trypsin-catalysed hydrolysis of specific ring-activated anilides. Petkov DD Biochim Biophys Acta; 1978 Apr; 523(2):538-41. PubMed ID: 566121 [TBL] [Abstract][Full Text] [Related]
4. [Hydrophobic interactions of serine proteases with low molecular compounds: role of the S'2-site in substrate activation and interaction with serpines]. Verevka SV; Shulezhko LA; Kolodzeĭskaia MV Ukr Biokhim Zh (1978); 1991; 63(5):45-51. PubMed ID: 1788873 [TBL] [Abstract][Full Text] [Related]
5. Substrate specificities of tissue kallikrein and T-kininogenase: their possible role in kininogen processing. Chagas JR; Hirata IY; Juliano MA; Xiong W; Wang C; Chao J; Juliano L; Prado ES Biochemistry; 1992 Jun; 31(21):4969-74. PubMed ID: 1599922 [TBL] [Abstract][Full Text] [Related]
6. Trypsin catalyzed hydrolysis of new chromogenic arginine substrates. Somorin O; Ameghashitsi L Biochem Int; 1987 Dec; 15(6):1189-96. PubMed ID: 3440026 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the substrate-binding site of trypsin by the aid of tripeptidyl-p-nitroanilide substrates. Pozsgay M; Szabó G; Bajusz S; Simonsson R; Gáspár R; Elödi P Eur J Biochem; 1981 Apr; 115(3):497-502. PubMed ID: 7238517 [TBL] [Abstract][Full Text] [Related]
8. Comparative specificity of porcine pancreatic kallikrein and bovine pancreatic trypsin. Importance of interactions N-terminal to the scissible bond. Bizzozero SA; Dutler H Arch Biochem Biophys; 1987 Aug; 256(2):662-76. PubMed ID: 3650053 [TBL] [Abstract][Full Text] [Related]
9. [Comparative analysis of substrate specificity of pancreatic serine proteinases of different origin]. Pivnenko TN; Epshteĭn LM; Okladnikova SV Zh Evol Biokhim Fiziol; 1997; 33(6):615-21. PubMed ID: 9542054 [No Abstract] [Full Text] [Related]
10. Competitive parabolic inhibition of bovine trypsin by bis-benzamidines. Junqueira RG; Silva E; Mares-Guia M Braz J Med Biol Res; 1992; 25(9):873-87. PubMed ID: 1342833 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of hydrolysis of amide and anilide substrates of p-guanidino-L-phenylalanine by bovine and porcine trypsins. Tsunematsu H; Nishimura H; Mizusaki K; Makisumi S J Biochem; 1985 Feb; 97(2):617-23. PubMed ID: 4008471 [TBL] [Abstract][Full Text] [Related]
12. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat. Balbaa M; Cunningham A; Hofmann T Arch Biochem Biophys; 1993 Nov; 306(2):297-303. PubMed ID: 8215428 [TBL] [Abstract][Full Text] [Related]
13. Microassay for proteolytic enzymes using a new radioactive anilide substrate. Roffman S; Troll W Anal Biochem; 1974 Sep; 61(1):1-5. PubMed ID: 4414667 [No Abstract] [Full Text] [Related]
14. Substrate activation in the trypsin-catalyzed hydrolysis of benzoyl-L-arginine p-nitroanilide. Nakata H; Ishii SI Biochem Biophys Res Commun; 1970 Oct; 41(2):393-400. PubMed ID: 5534737 [No Abstract] [Full Text] [Related]
15. Interactions of derivatives of guanidinophenylalanine and guanidinophenylglycine with Streptomyces griseus trypsin. Hatanaka Y; Tsunematsu H; Mizusaki K; Makisumi S Biochim Biophys Acta; 1985 Dec; 832(3):274-9. PubMed ID: 3935172 [TBL] [Abstract][Full Text] [Related]
16. Specificity mapping of HIV-1 protease by reduced bond inhibitors. Majer P; Urban J; Gregorová E; Konvalinka J; Novek P; Stehlíková J; Andreánsky M; Sedlácek J; Strop P Arch Biochem Biophys; 1993 Jul; 304(1):1-8. PubMed ID: 8323274 [TBL] [Abstract][Full Text] [Related]
17. New approaches to peptide synthesis with the help of trypsin. Mitin YuV ; Zapevalova NP; Gorbunova EYu Biomed Biochim Acta; 1991; 50(10-11):S74-9. PubMed ID: 1820064 [TBL] [Abstract][Full Text] [Related]
18. Determinants of the unusual cleavage specificity of lysyl-bradykinin-releasing kallikreins. Chagas JR; Portaro FC; Hirata IY; Almeida PC; Juliano MA; Juliano L; Prado ES Biochem J; 1995 Feb; 306 ( Pt 1)(Pt 1):63-9. PubMed ID: 7864830 [TBL] [Abstract][Full Text] [Related]
19. A kinetic study of the trypsin catalyzed hydrolysis of a specific anilide substrate. Inagami T J Biochem; 1969 Aug; 66(2):277-9. PubMed ID: 5388297 [No Abstract] [Full Text] [Related]
20. The mechanism of the alpha-chymotrypsin and trypsin-catalyzed hydrolysis of amides. Evidence for the participation of the active serine in the amidase activity of trypsin. Berezin IV; Kazanskaya NF; Klyosov AA; Svedas VK Eur J Biochem; 1973 Oct; 38(3):529-36. PubMed ID: 4772672 [No Abstract] [Full Text] [Related] [Next] [New Search]