These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 7159409)

  • 1. Studies in vitro on shuttle systems of mouse spermatozoa.
    Burgos C; Coronel CE; de Burgos NM; Rovai LE; Blanco A
    Biochem J; 1982 Nov; 208(2):413-7. PubMed ID: 7159409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of the branched-chain 2-hydroxy acid/2-oxo acid shuttle in mouse spermatozoa.
    Coronel CE; Gallina FG; Gerez de Burgos NM; Burgos C; Blanco A
    Biochem J; 1986 May; 235(3):853-8. PubMed ID: 2875710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lactate/pyruvate shuttle in spermatozoa: operation in vitro.
    Gallina FG; Gerez de Burgos NM; Burgos C; Coronel CE; Blanco A
    Arch Biochem Biophys; 1994 Feb; 308(2):515-9. PubMed ID: 8109982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems.
    Abbrescia DI; La Piana G; Lofrumento NE
    Arch Biochem Biophys; 2012 Feb; 518(2):157-63. PubMed ID: 22239987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A shuttle system for the transfer of reducing equivalents in mouse sperm mitochondria.
    de Burgos NM; Burgos C; Montamat EE; Moreno J; Blanco A
    Biochem Biophys Res Commun; 1978 Mar; 81(2):644-9. PubMed ID: 208531
    [No Abstract]   [Full Text] [Related]  

  • 6. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools.
    McKenna MC; Waagepetersen HS; Schousboe A; Sonnewald U
    Biochem Pharmacol; 2006 Feb; 71(4):399-407. PubMed ID: 16368075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial transport processes and oxidation of NADH by hypotonically-treated boar spermatozoa.
    Calvin J; Tubbs PK
    Eur J Biochem; 1978 Aug; 89(1):315-20. PubMed ID: 212270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydrogenation through the looking-glass.
    Lamzin VS; Dauter Z; Wilson KS
    Nat Struct Biol; 1994 May; 1(5):281-2. PubMed ID: 7664032
    [No Abstract]   [Full Text] [Related]  

  • 9. Branched-chain amino acid aminotransferase in mouse testicular tissue.
    Montamat EE; Moreno J; Blanco A
    J Reprod Fertil; 1978 May; 53(1):117-23. PubMed ID: 641889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1998 Aug; 30(8):1571-9. PubMed ID: 9737943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae.
    Bakker BM; Overkamp KM; van Maris AJ ; Kötter P; Luttik MA; van Dijken JP ; Pronk JT
    FEMS Microbiol Rev; 2001 Jan; 25(1):15-37. PubMed ID: 11152939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of the testicular lactate dehydrogenase isoenzyme.
    Blanco A; Burgos C; Gerez de Burgos NM; Montamat EE
    Biochem J; 1976 Feb; 153(2):165-72. PubMed ID: 1275882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of valine and 3-methyl-2-oxobutanoate by the isolated perfused rat kidney.
    Miller RH; Harper AE
    Biochem J; 1984 Nov; 224(1):109-16. PubMed ID: 6508752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4-Methyl-2-oxopentanoate oxidation by rat skeletal-muscle mitochondria.
    Van Hinsbergh VW; Veerkamp JH; Glatz JF
    Biochem J; 1979 Aug; 182(2):353-60. PubMed ID: 508289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The photorespiratory hydrogen shuttle. Synthesis of phthalonic acid and its use in the characterization of the malate/aspartate shuttle in pea (Pisum sativum) leaf mitochondria.
    Dry IB; Dimitriadis E; Ward AD; Wiskich JT
    Biochem J; 1987 Aug; 245(3):669-75. PubMed ID: 3663185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial purification and properties of branched-chain 2-oxo acid dehydrogenase of ox liver.
    Parker PJ; Randle PJ
    Biochem J; 1978 Jun; 171(3):751-7. PubMed ID: 208515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory effects of fatty acids on decarboxylation of leucine and 4-methyl-2-oxopentanoate in the perfused rat heart.
    Buxton DB; Barron LL; Taylor MK; Olson MS
    Biochem J; 1984 Aug; 221(3):593-9. PubMed ID: 6477487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells.
    Grivell AR; Korpelainen EI; Williams CJ; Berry MN
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):665-71. PubMed ID: 7654209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Ansell R; Rigoulet M; Adler L; Gustafsson L
    Yeast; 1998 Mar; 14(4):347-57. PubMed ID: 9559543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The noninvolvement of MDH as NAD-oxidoreductase shuttle in rat liver peroxisomes.
    Horie S; Ishii H; Itoh S; Suga T
    Biochem Int; 1984 Mar; 8(3):353-9. PubMed ID: 6477606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.