These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7159582)

  • 21. Use of lipophilic probes of membrane potential to assess human neutrophil activation. Abnormality in chronic granulomatous disease.
    Seligmann BE; Gallin JI
    J Clin Invest; 1980 Sep; 66(3):493-503. PubMed ID: 6249851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of potassium depolarization on sodium-dependent calcium efflux from goldfish heart ventricles and guinea-pig atria.
    Busselen P
    J Physiol; 1982 Jun; 327():309-24. PubMed ID: 7120140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans.
    Prasad R; Höfer M
    Biochim Biophys Acta; 1986 Oct; 861(2):377-80. PubMed ID: 3530329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exudation primes human and guinea pig neutrophils for subsequent responsiveness to the chemotactic peptide N-formylmethionylleucylphenylalanine and increases complement component C3bi receptor expression.
    Zimmerli W; Seligmann B; Gallin JI
    J Clin Invest; 1986 Mar; 77(3):925-33. PubMed ID: 3005369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction in accumulation of [3H]triphenylmethylphosphonium cation in neuroblastoma cells caused by optical probes of membrane potential. Evidence for interactions between carbocyanine dyes and lipophilic anions.
    Milligan G; Strange PG
    Biochim Biophys Acta; 1983 Jul; 762(4):585-92. PubMed ID: 6871253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial defects in cis-diamminedichloroplatinum(II)-resistant human ovarian carcinoma cells.
    Andrews PA; Albright KD
    Cancer Res; 1992 Apr; 52(7):1895-901. PubMed ID: 1551118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phorbol ester-stimulated human neutrophil membrane depolarization is dependent on Ca2(+)-regulated Cl- efflux.
    Myers JB; Cantiello HF; Schwartz JH; Tauber AI
    Am J Physiol; 1990 Oct; 259(4 Pt 1):C531-40. PubMed ID: 2171344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of platelet membrane potential in the initiation of platelet aggregation.
    MacIntyre DE; Rink TJ
    Thromb Haemost; 1982 Feb; 47(1):22-6. PubMed ID: 6176041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Some characteristics of tetraphenylphosphonium uptake into Saccharomyces cerevisiae.
    Boxman AW; Barts PW; Borst-Pauwels GW
    Biochim Biophys Acta; 1982 Mar; 686(1):13-8. PubMed ID: 7039677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring of the mitochondrial and plasma membrane potentials in human fibroblasts by tetraphenylphosphonium ion distribution.
    Rugolo M; Lenaz G
    J Bioenerg Biomembr; 1987 Dec; 19(6):705-18. PubMed ID: 3693347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative measurements of the proton-motive force and its relation to steady state lactose accumulation in Escherichia coli.
    Ahmed S; Booth IR
    Biochem J; 1981 Dec; 200(3):573-81. PubMed ID: 6282253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinction between changes in membrane potential and surface charge upon chemotactic stimulation of Escherichia coli.
    Eisenbach M; Margolin Y; Ciobotariu A; Rottenberg H
    Biophys J; 1984 Feb; 45(2):463-7. PubMed ID: 6365190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The energetics of D-fucose transport in Saccharomyces fragilis. The influence of the protonmotive force on sugar accumulation.
    Van den Broek PJ; Christianse K; Van Steveninck J
    Biochim Biophys Acta; 1982 Nov; 692(2):231-7. PubMed ID: 7171593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the valence of concanavalin A in the activation of guinea pig polymorphonuclear leukocytes.
    Kuroki M; Kamo N; Kobatake Y; Abe Y; Ishii S
    Cell Struct Funct; 1986 Jun; 11(2):199-204. PubMed ID: 3015430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stimulus-response coupling in the human neutrophil. Transmembrane potential and the role of extracellular Na+.
    Korchak HM; Weissmann G
    Biochim Biophys Acta; 1980 Sep; 601(1):180-94. PubMed ID: 6250607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sodium and potassium fluxes and membrane potential of human neutrophils: evidence for an electrogenic sodium pump.
    Simchowitz L; Spilberg I; De Weer P
    J Gen Physiol; 1982 Mar; 79(3):453-79. PubMed ID: 6281359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Proton-potassium exchange in Escherichia coli].
    Durgar'ian SS; Martirosov SM
    Biofizika; 1980; 25(3):469-72. PubMed ID: 6994822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial cytoplasmic membrane permeability assay using ion-selective electrodes.
    Ohmizo C; Yata M; Katsu T
    J Microbiol Methods; 2004 Nov; 59(2):173-9. PubMed ID: 15369853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane potential of olfactory bulb synaptosomal fractions: characterization with the lipophilic cation tetraphenylphosphonium.
    Rochel S; Lichtstein D; Blume AJ; Margolis FL
    J Neurosci; 1981 Oct; 1(10):1180-92. PubMed ID: 6116747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane potential of primitive red cells from chick embryo is a proton potential.
    Engelke M; Zingel W; Baumann R
    J Cell Physiol; 1988 Apr; 135(1):87-93. PubMed ID: 2835379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.