These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 7159584)

  • 81. Interaction of the sugar carrier of intestinal brush-border membranes with HgCl2.
    Klip A; Grinstein S; Biber J; Semenza G
    Biochim Biophys Acta; 1980 May; 598(1):100-14. PubMed ID: 6448071
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Temperature dependence of D-glucose transport in reconstituted liposomes.
    Da Cruz ME; Kinne R; Lin JT
    Biochim Biophys Acta; 1983 Aug; 732(3):691-8. PubMed ID: 6871221
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Different mechanisms of adaptive increase in Na+-Pi cotransport across renal brush-border membrane.
    Yusufi AN; Szczepanska-Konkel M; Hoppe A; Dousa TP
    Am J Physiol; 1989 May; 256(5 Pt 2):F852-61. PubMed ID: 2524168
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A Na+-dependent D-mannose transporter in the apical membrane of chicken small intestine epithelial cells.
    Cano M; Calonge ML; Peral MJ; Ilundáin AA
    Pflugers Arch; 2001 Feb; 441(5):686-91. PubMed ID: 11294251
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Bile-salt inhibition of sodium ion-coupled D-glucose and L-alanine accumulation by brush-border-membrane vesicles from hamster jejunum.
    Beesley RC; Faust RG
    Biochem J; 1980 Sep; 190(3):731-6. PubMed ID: 7470076
    [TBL] [Abstract][Full Text] [Related]  

  • 86. 2-Deoxy-D-glucose transport in dog kidney.
    Silverman M; Turner RJ
    Am J Physiol; 1982 Jun; 242(6):F711-20. PubMed ID: 7091323
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Na(+)-dependent D-mannose transport at the apical membrane of rat small intestine and kidney cortex.
    De la Horra MC; Cano M; Peral MJ; García-Delgado M; Durán JM; Calonge ML; Ilundáin AA
    Biochim Biophys Acta; 2001 Jun; 1512(2):225-30. PubMed ID: 11406099
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Evidence for two disulfide bonds important to the functioning of the renal outer cortical brush-border membrane D-glucose transporter.
    Turner RJ; George JN
    J Biol Chem; 1983 Mar; 258(6):3565-70. PubMed ID: 6682100
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The effect of parathyroid hormone (PTH) and dietary phosphate on the sodium-dependent phosphate transport system located in the rat renal brush border membrane.
    Murer H; Evers C; Stoll R; Kinne R
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():455-62. PubMed ID: 211000
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The interaction of phenformin and phlorizin with brush border membrane vesicles, phospholipid liposomes, and phospholipid liposomes containing brush border membrane protein.
    Ferguson DR; Matthews EK; O'Connor MD; Schuz AD
    Biochem Pharmacol; 1981 Jun; 30(12):1613-9. PubMed ID: 7271849
    [No Abstract]   [Full Text] [Related]  

  • 91. Phlorizin binding to renal outer cortical brush-border membranes of cadmium-injected rabbits.
    Kim KR; Park YS
    Toxicol Appl Pharmacol; 1995 Aug; 133(2):244-8. PubMed ID: 7645020
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Glucose and sodium transport in brush-border membrane vesicles from fetal rabbit kidney.
    Beck JC
    Ann N Y Acad Sci; 1985; 456():457-9. PubMed ID: 3004302
    [No Abstract]   [Full Text] [Related]  

  • 93. Isolation and partial purification of a Na+-dependent phlorizin receptor from dog kidney proximal tubule.
    Silverman M; Speight P
    J Biol Chem; 1986 Oct; 261(29):13820-6. PubMed ID: 3759992
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Energy-dependence of phlorizin binding to isolated renal microvillus membranes. Evidence concerning the mechanism of coupling between the electrochemical Na+ gradient the sugar transport.
    Aronson PS
    J Membr Biol; 1978 Jul; 42(1):81-98. PubMed ID: 671529
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Inhibition of human renal epithelial Na+/Pi cotransport by phosphonoformic acid.
    Yusufi AN; Szczepanska-Konkel M; Kempson SA; McAteer JA; Dousa TP
    Biochem Biophys Res Commun; 1986 Sep; 139(2):679-86. PubMed ID: 2945556
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Radiation inactivation studies of the renal brush-border membrane phlorizin-binding protein.
    Turner RJ; Kempner ES
    J Biol Chem; 1982 Sep; 257(18):10794-7. PubMed ID: 6286675
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Endogenous D-glucose transport in oocytes of Xenopus laevis.
    Weber WM; Schwarz W; Passow H
    J Membr Biol; 1989 Oct; 111(1):93-102. PubMed ID: 2810354
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Stoichiometry of Na+-succinate cotransport in renal brush-border membranes.
    Wright SH; Kippen I; Wright EM
    J Biol Chem; 1982 Feb; 257(4):1773-8. PubMed ID: 7056744
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Identification of D-glucose-binding polypeptides which are components of the renal Na+-D-glucose cotransporter.
    Neeb M; Kunz U; Koepsell H
    J Biol Chem; 1987 Aug; 262(22):10718-27. PubMed ID: 3611086
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Na+-dependent sugar transport in a cultured epithelial cell line from pig kidney.
    Rabito CA; Ausiello DA
    J Membr Biol; 1980; 54(1):31-8. PubMed ID: 7205941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.