These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 7159614)

  • 1. [Change of low-angle X-ray diffraction in the process of the transition of striated muscle into rigor].
    Savel'ev VB
    Biofizika; 1982; 27(6):1044-8. PubMed ID: 7159614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study of the mechanics and small-angle equatorial x-ray pattern of the frog skeletal muscle during transition and rigor at different temperatures].
    Savel'ev VB
    Biofizika; 1986; 31(6):1027-32. PubMed ID: 3492220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes during contraction in vertebrate skeletal muscle as studied by time-resolved X-ray diffraction technique.
    Sugi H; Tanaka H; Wakabayashi K; Kobayashi T; Iwamoto H; Hamanaka T; Mitsui T; Amemiya Y
    Biomed Biochim Acta; 1986; 45(1-2):S15-22. PubMed ID: 3485970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Relation between the intensity of low-angle equatorial reflections of x-ray diffraction patterns of frog skeletal muscle and sarcomere length].
    Savel'ev VB
    Biofizika; 1985; 30(5):873-7. PubMed ID: 3876850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of muscle storage and stimulation on the intensity of Z-reflection of its equatorial x-ray pattern].
    Savel'ev VB
    Biofizika; 1986; 31(4):720-1. PubMed ID: 3756237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle force is generated by myosin heads stereospecifically attached to actin.
    Bershitsky SY; Tsaturyan AK; Bershitskaya ON; Mashanov GI; Brown P; Burns R; Ferenczi MA
    Nature; 1997 Jul; 388(6638):186-90. PubMed ID: 9217160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An X-ray diffraction study of frog skeletal muscle during shortening near the maximum velocity.
    Yagi N; Takemori S; Watanabe M
    J Mol Biol; 1993 Jun; 231(3):668-77. PubMed ID: 8515444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of thick filament structure during contraction of frog striated muscle.
    Yagi N; O'Brien EJ; Matsubara I
    Biophys J; 1981 Jan; 33(1):121-37. PubMed ID: 6974013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equatorial A-band and I-band X-ray diffraction from relaxed and active fish muscle. Further details of myosin crossbridge behaviour.
    Harford J; Luther P; Squire J
    J Mol Biol; 1994 Jun; 239(4):500-12. PubMed ID: 8006964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved x-ray diffraction studies on the intensity changes of the 5.9 and 5.1 nm actin layer lines from frog skeletal muscle during an isometric tetanus using synchrotron radiation.
    Wakabayashi K; Tanaka H; Amemiya Y; Fujishima A; Kobayashi T; Hamanaka T; Sugi H; Mitsui T
    Biophys J; 1985 Jun; 47(6):847-50. PubMed ID: 3874653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [X-ray diffraction study of the molecular nature of the dependence of rigor tension developed by skinned rabbit psoas muscle on the ionic strength of the solution].
    Lednev VV; Kornev AN; Srebnitskaia LK
    Biofizika; 1983; 28(4):705-7. PubMed ID: 6615912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pressure on equatorial x-ray fiber diffraction from skeletal muscle fibers.
    Knight PJ; Fortune NS; Geeves MA
    Biophys J; 1993 Aug; 65(2):814-22. PubMed ID: 8218906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [X-ray study of the effect of pyrophosphate on thick filament structure in skinned fiber bundles of the rabbit psoas muscle].
    Lednev VV; Kornev AN; Srebnitskaia LK; Khromov AS
    Biofizika; 1983; 28(2):302-5. PubMed ID: 6303449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the X-ray diffraction pattern from rigor muscles by application of external length changes.
    Tanaka H; Wakabayashi K; Amemiya Y
    Adv Biophys; 1991; 27():105-14. PubMed ID: 1755354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of the ATP analogue AMPPNP on the structure of crossbridges in vertebrate skeletal muscles: X-ray diffraction and mechanical studies.
    Padrón R; Huxley HE
    J Muscle Res Cell Motil; 1984 Dec; 5(6):613-55. PubMed ID: 6335887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Interpretation of the pictures of meridional diffraction on X-rays of membrane-free rabbit spinal muscles in a state of rigor and their dependence on physico-chemical parameters of rigorising solution].
    Lednev VV; Kornev AN; Srebnitskaia LK; Malinchik SB; Khromov AS
    Biofizika; 1982; 27(6):1027-40. PubMed ID: 7159612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis of the equatorial section of X-ray diffraction patterns of striated muscles of tarantulas under various experimental conditions].
    Sosa H; Pante N; Padrón R
    Acta Cient Venez; 1988; 39(1):51-9. PubMed ID: 3239340
    [No Abstract]   [Full Text] [Related]  

  • 18. Time-resolved x-ray study of effect of sinusoidal length change on tetanized frog muscle.
    Wakabayashi K; Tanaka H; Kobayashi T; Amemiya Y; Hamanaka T; Nishizawa S; Sugi H; Mitsui T
    Biophys J; 1986 Feb; 49(2):581-4. PubMed ID: 3485452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New X-ray diffraction observations on vertebrate muscle: organisation of C-protein (MyBP-C) and troponin and evidence for unknown structures in the vertebrate A-band.
    Squire JM; Roessle M; Knupp C
    J Mol Biol; 2004 Nov; 343(5):1345-63. PubMed ID: 15491617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved X-ray diffraction studies on stretch-activated insect flight muscle.
    Rapp G; Güth K; Maeda Y; Poole KJ; Goody RS
    J Muscle Res Cell Motil; 1991 Apr; 12(2):208-15. PubMed ID: 2061413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.