These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7159685)

  • 21. Characterization of arylamine acetyltransferase in the rabbit eye.
    Campbell DA; Schoenwald RD; Duffel MW; Barfknecht CF
    Invest Ophthalmol Vis Sci; 1991 Jul; 32(8):2190-200. PubMed ID: 2071333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic studies on transcorneal permeation of pilocarpine.
    Sieg JW; Robinson JR
    J Pharm Sci; 1976 Dec; 65(12):1816-22. PubMed ID: 1032669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drug reservoirs in topical therapy.
    Mindel JS; Smith H; Jacobs M; Kharlamb AB; Friedman AH
    Invest Ophthalmol Vis Sci; 1984 Mar; 25(3):346-50. PubMed ID: 6698752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aminopeptidase activity in albino rabbit extraocular tissues relative to the small intestine.
    Stratford RE; Lee VH
    J Pharm Sci; 1985 Jul; 74(7):731-4. PubMed ID: 4032244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the ocular to systemic ratio of topical timolol by varying the dosing time.
    Ohdo S; Grass GM; Lee VH
    Invest Ophthalmol Vis Sci; 1991 Sep; 32(10):2790-8. PubMed ID: 1894477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms of corneal drug penetration. I: In vivo and in vitro kinetics.
    Grass GM; Robinson JR
    J Pharm Sci; 1988 Jan; 77(1):3-14. PubMed ID: 3126290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ocular ketone reductase distribution and its role in the metabolism of ocularly applied levobunolol in the pigmented rabbit.
    Lee VH; Chien DS; Sasaki H
    J Pharmacol Exp Ther; 1988 Sep; 246(3):871-8. PubMed ID: 3047365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The appearance and possible role of plasminogen activator of urokinase type (u-PA) activity in the cornea related to soft contact lens wear in rabbits.
    Cejková J
    Doc Ophthalmol; 1998; 95(2):165-79. PubMed ID: 10431800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Corneal cell culture models: a tool to study corneal drug absorption.
    Dey S
    Expert Opin Drug Metab Toxicol; 2011 May; 7(5):529-32. PubMed ID: 21500964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement and modeling of diffusion kinetics of a lipophilic molecule across rabbit cornea.
    Gupta C; Chauhan A; Mutharasan R; Srinivas SP
    Pharm Res; 2010 Apr; 27(4):699-711. PubMed ID: 20182774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea.
    Anand BS; Mitra AK
    Pharm Res; 2002 Aug; 19(8):1194-202. PubMed ID: 12240946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical and histochemical response to a complete epithelial denudation of the rabbit cornea. Alkaline and acid phosphatase.
    Bolková A; Cejková J
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1978 Dec; 209(2):137-43. PubMed ID: 311168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The distribution of esterases in the skin of the minipig.
    Jewell C; Prusakiewicz JJ; Ackermann C; Payne NA; Fate G; Williams FM
    Toxicol Lett; 2007 Sep; 173(2):118-23. PubMed ID: 17719730
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport of acyclovir ester prodrugs through rabbit cornea and SIRC-rabbit corneal epithelial cell line.
    Tak RV; Pal D; Gao H; Dey S; Mitra AK
    J Pharm Sci; 2001 Oct; 90(10):1505-15. PubMed ID: 11745709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbonic anhydrase distribution in the rabbit eye by light and electron microscopy.
    Lütjen-Drecoll E; Lönnerholm G
    Invest Ophthalmol Vis Sci; 1981 Dec; 21(6):782-97. PubMed ID: 6796537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Corneal penetration behavior of beta-blocking agents II: Assessment of barrier contributions.
    Huang HS; Schoenwald RD; Lach JL
    J Pharm Sci; 1983 Nov; 72(11):1272-9. PubMed ID: 6139472
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in alkaline and acid phosphatases of the rabbit cornea following experimental exposure to ethanol and acetone: a biochemical and histochemical study.
    Bolková A; Cejková J
    Graefes Arch Clin Exp Ophthalmol; 1983; 220(2):96-9. PubMed ID: 6862191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The microchemical detection of carbonic anhydrase in corneal epithelia.
    Conroy CW; Buck RH; Maren TH
    Exp Eye Res; 1992 Oct; 55(4):637-40. PubMed ID: 1483509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of influenza C virus by using an in situ esterase assay.
    Wagaman PC; Spence HA; O'Callaghan RJ
    J Clin Microbiol; 1989 May; 27(5):832-6. PubMed ID: 2745694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrolysis of organophosphorus compounds by an esterase isozyme from insecticide resistant pest Helicoverpa armigera.
    Srinivas R; Jayalakshmi SK; Sreeramulu K
    Indian J Exp Biol; 2004 Feb; 42(2):214-6. PubMed ID: 15282957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.