These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 7159931)

  • 1. Centrosome splitting in neutrophils: an unusual phenomenon related to cell activation and motility.
    Schliwa M; Pryzwansky KB; Euteneuer U
    Cell; 1982 Dec; 31(3 Pt 2):705-17. PubMed ID: 7159931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor promoter-induced centrosome splitting in human polymorphonuclear leukocytes.
    Schliwa M; Pryzwansky KB; Borisy GG
    Eur J Cell Biol; 1983 Nov; 32(1):75-85. PubMed ID: 6667698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for an involvement of actin in the positioning and motility of centrosomes.
    Euteneuer U; Schliwa M
    J Cell Biol; 1985 Jul; 101(1):96-103. PubMed ID: 4040137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis.
    Malech HL; Root RK; Gallin JI
    J Cell Biol; 1977 Dec; 75(3):666-93. PubMed ID: 562885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule-nucleating activity of centrosomes in Chinese hamster ovary cells is independent of the centriole cycle but coupled to the mitotic cycle.
    Kuriyama R; Borisy GG
    J Cell Biol; 1981 Dec; 91(3 Pt 1):822-6. PubMed ID: 7328124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the centrosome in organizing the interphase microtubule array: properties of cytoplasts containing or lacking centrosomes.
    Karsenti E; Kobayashi S; Mitchison T; Kirschner M
    J Cell Biol; 1984 May; 98(5):1763-76. PubMed ID: 6725398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity and stability of centrosomes in Chinese hamster ovary cells in nucleation of microtubules in vitro.
    Kuriyama R
    J Cell Sci; 1984 Mar; 66():277-95. PubMed ID: 6540269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cytokineplast: purified, stable, and functional motile machinery from human blood polymorphonuclear leukocytes.
    Malawista SE; De Boisfleury Chevance A
    J Cell Biol; 1982 Dec; 95(3):960-73. PubMed ID: 6891383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the three-dimensional organization of unextracted and Triton-extracted human neutrophilic polymorphonuclear leukocytes.
    Pryzwansky KB; Schliwa M; Porter KR
    Eur J Cell Biol; 1983 Mar; 30(1):112-25. PubMed ID: 6682762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in organization and microtubule assembly activity of the centrosome during lymphocyte stimulation.
    Schweitzer I; Brown DL
    Biol Cell; 1984; 52(2):147-59. PubMed ID: 6241490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser irradiation of centrosomes in newt eosinophils: evidence of centriole role in motility.
    Koonce MP; Cloney RA; Berns MW
    J Cell Biol; 1984 Jun; 98(6):1999-2010. PubMed ID: 6725407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The force-producing mechanism for centrosome separation during spindle formation in vertebrates is intrinsic to each aster.
    Waters JC; Cole RW; Rieder CL
    J Cell Biol; 1993 Jul; 122(2):361-72. PubMed ID: 8320259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs.
    Karsenti E; Newport J; Hubble R; Kirschner M
    J Cell Biol; 1984 May; 98(5):1730-45. PubMed ID: 6725396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1988; 11(4):248-59. PubMed ID: 3064924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The intercentriolar linkage is critical for the ability of heterologous centrosomes to induce parthenogenesis in Xenopus.
    Tournier F; Komesli S; Paintrand M; Job D; Bornens M
    J Cell Biol; 1991 Jun; 113(6):1361-9. PubMed ID: 2045416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sperm centriole: its inheritance, replication and perpetuation in early human embryos.
    Sathananthan AH; Ratnam SS; Ng SC; Tarín JJ; Gianaroli L; Trounson A
    Hum Reprod; 1996 Feb; 11(2):345-56. PubMed ID: 8671223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [An electron microscopic study of centriole and centrosome morphogenesis in the early development of the mouse].
    Abumuslimov SS; Nadezhdina ES; Chentsov IuS
    Tsitologiia; 1994; 36(11):1054-61. PubMed ID: 7709467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human leukocytes as viewed by stereo high-voltage electronmicroscopy.
    Pryzwansky KB
    Blood Cells; 1987; 12(3):505-30. PubMed ID: 3651611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Centrosome assembly in vitro: role of gamma-tubulin recruitment in Xenopus sperm aster formation.
    Félix MA; Antony C; Wright M; Maro B
    J Cell Biol; 1994 Jan; 124(1-2):19-31. PubMed ID: 8294501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule-organizing centers abnormal in number, structure, and nucleating activity in x-irradiated mammalian cells.
    Sato C; Kuriyama R; Nishizawa K
    J Cell Biol; 1983 Mar; 96(3):776-82. PubMed ID: 6833383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.