These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7160315)

  • 1. Brain catecholamine concentration during the first week of development in rats.
    Phelps CP; Korányi L; Tamásy V
    Dev Neurosci; 1982; 5(5-6):503-7. PubMed ID: 7160315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of dopaminergic and serotonergic mechanisms in the development of swimming ability of young rats.
    Tamásy V; Korányi L; Phelps CP
    Dev Neurosci; 1981; 4(5):389-400. PubMed ID: 7327101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral differences between neonatal and adult 6-hydroxydopamine-treated rats to dopamine agonists: relevance to neurological symptoms in clinical syndromes with reduced brain dopamine.
    Breese GR; Baumeister AA; McCown TJ; Emerick SG; Frye GD; Crotty K; Mueller RA
    J Pharmacol Exp Ther; 1984 Nov; 231(2):343-54. PubMed ID: 6149306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of vesicular dopamine and norepinephrine by monoamine oxidase inhibitors.
    Buu NT
    Biochem Pharmacol; 1989 May; 38(10):1685-92. PubMed ID: 2730683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Narcotic withdrawal like mouse jumping produced by amphetamine and L-DOPA.
    Lal H; Colpaert FC; Laduron P
    Eur J Pharmacol; 1975 Jan; 30(1):113-6. PubMed ID: 1168136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of exogenous dopamine on hypothalamic dopamine and norepinephrine concentrations in the neonatal brain in rats.
    Ohkura T; Lee JW; Hagino N
    Int J Dev Neurosci; 1986; 4(2):129-33. PubMed ID: 3455577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catecholamines and operant response rates in albino rats.
    Will B; Maurissen J; Ropartz P
    Psychopharmacol Commun; 1976; 2(3):219-29. PubMed ID: 996277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of L-DOPA on the concentrations of free and sulfoconjugated catecholamines in plasma, cerebrospinal fluid, urine, and central and peripheral nervous system tissues of the rat.
    Buu NT; Duhaime J; Kuchel O
    J Neurochem; 1985 Mar; 44(3):787-92. PubMed ID: 3838339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of brain catecholamines on 'drug taking behaviour' relative to oral self-administration of d-amphetamine by rats.
    Kongyingyoes B; Jänicke B; Coper H
    Drug Alcohol Depend; 1988 Dec; 22(3):223-33. PubMed ID: 3234246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochemical evidence for the existence of norepinephrine-containing glomus cells in the rat carotid body.
    Christie DS; Hansen JT
    J Neurocytol; 1983 Dec; 12(6):1041-53. PubMed ID: 6663323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responsiveness to d-amphetamine in lead-exposed rats as measured by steady state levels of catecholamines and locomotor activity.
    Rafales LS; Greenland RD; Zenick H; Goldsmith M; Michaelson IA
    Neurobehav Toxicol Teratol; 1981; 3(3):363-7. PubMed ID: 7290291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional consequences of iron overload in catecholaminergic interactions: the Youdim factor.
    Archer T; Fredriksson A
    Neurochem Res; 2007 Oct; 32(10):1625-39. PubMed ID: 17694434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cerebral metabolism of L-dihydroxyphenylalanine. An autoradiographic and biochemical study.
    Horne MK; Cheng CH; Wooten GF
    Pharmacology; 1984; 28(1):12-26. PubMed ID: 6701184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved method for determination of catecholamines in rat brain by isolation on boric acid gel and high-performance liquid chromatography with electrochemical detection.
    Koike K; Aono T; Chatani F; Takemura T; Kurachi K
    Life Sci; 1982 Jun; 30(25):2221-8. PubMed ID: 7202097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dietary tyrosine on L-dopa- and amphetamine-induced changes in locomotor activity and neurochemistry in mice.
    Thurmond JB; Freeman GB; Soblosky JS; Ieni JR; Brown JW
    Pharmacol Biochem Behav; 1990 Oct; 37(2):259-66. PubMed ID: 2080188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurochemical similarities between d,l-cathinone and d-amphetamine.
    Wagner GC; Preston K; Ricaurte GA; Schuster CR; Seiden LS
    Drug Alcohol Depend; 1982 Aug; 9(4):279-84. PubMed ID: 7128450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopaminergic nature of amphetamine-induced pecking in pigeons.
    Cheng HC; Bhatnagar RK; Long JP
    Eur J Pharmacol; 1975; 33(2):319-24. PubMed ID: 1237409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of neuroleptics with central dopamine and noradrenaline receptor blocking properties in the L-DOPA and (+)-amphetamine-induced waking EEG in the rat.
    Monti JM
    Br J Pharmacol; 1979 Sep; 67(1):87-91. PubMed ID: 40644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of effects of chlordecone on synthesis rates, steady state levels and metabolites of catecholamines in rat brain.
    Aldous CN; Chetty CS; Mehendale HM; Desaiah D
    Neurotoxicology; 1984; 5(2):59-65. PubMed ID: 6209598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurochemical characteristics of cerebral catecholamine neurons during the postnatal development in the rat.
    Hedner T; Lundborg P
    Med Biol; 1981 Aug; 59(4):212-23. PubMed ID: 6803074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.