These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7160375)

  • 41. Heparin increases chromatin accessibility by binding the trypsin-sensitive basic residues in histones.
    Villeponteau B
    Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):953-8. PubMed ID: 1281984
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro core particle and nucleosome assembly at physiological ionic strength.
    Ruiz-Carrillo A; Jorcano JL; Eder G; Lurz R
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3284-8. PubMed ID: 291002
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nucleosome core particles of calf thymus, Tetrahymena, and the reconstituted hybrid. Their structure reflects the nature of the histone octamer.
    Kasai K; Hayashi H; Iwai K
    J Biochem; 1986 Jan; 99(1):91-8. PubMed ID: 3082864
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Salt-induced release of DNA from nucleosome core particles.
    Yager TD; McMurray CT; van Holde KE
    Biochemistry; 1989 Mar; 28(5):2271-81. PubMed ID: 2719953
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The interaction of H1 histone with nucleosome core.
    Ishimi Y; Ohba Y; Yasuda H; Yamada M
    J Biochem; 1981 Jun; 89(6):1881-8. PubMed ID: 7287662
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Histone hyperacetylation does not alter the positioning or stability of phased nucleosomes on the mouse mammary tumor virus long terminal repeat.
    Bresnick EH; John S; Hager GL
    Biochemistry; 1991 Apr; 30(14):3490-7. PubMed ID: 1849427
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Chemical acetylation, trypsinolysis and stability of nucleosomes].
    Karpenchuk KG
    Ukr Biokhim Zh (1978); 1983; 55(2):129-35. PubMed ID: 6845437
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteolytic digestion studies of chromatin core-histone structure. Identification of a limit peptide of histone H2A.
    Böhm L; Crane-Robinson C; Sautière P
    Eur J Biochem; 1980 May; 106(2):525-30. PubMed ID: 7398624
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of aggregation of histone octamers in high-salt solutions on circular dichroism spectra.
    Baxevanis AD; Godfrey JE; Moudrianakis EN; Park K; Fasman GD
    Biochemistry; 1990 Jan; 29(4):973-6. PubMed ID: 2340288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modulation of nucleosome structure by histone subtypes in sea urchin embryos.
    Simpson RT
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6803-7. PubMed ID: 6947254
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physical structure of gene-sized chromatin from the protozoan Oxytricha.
    Butler AP; Laughlin TJ; Cadilla CL; Henry JM; Olins DE
    Nucleic Acids Res; 1984 Apr; 12(7):3201-17. PubMed ID: 6718249
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dependence of mononucleosome deoxyribonucleic acid conformation on the deoxyribonucleic acid length and H1/H5 content. Circular dichroism and thermal denaturation studies.
    Cowman MK; Fasman GD
    Biochemistry; 1980 Feb; 19(3):532-41. PubMed ID: 7356945
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of Nucleosome Stacking and Chromatin Compaction by the Histone H4 N-Terminal Tail-H2A Acidic Patch Interaction.
    Chen Q; Yang R; Korolev N; Liu CF; Nordenskiöld L
    J Mol Biol; 2017 Jun; 429(13):2075-2092. PubMed ID: 28322915
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interaction of maize chromatin-associated HMG proteins with mononucleosomes: role of core and linker histones.
    Lichota J; Grasser KD
    Biol Chem; 2003 Jul; 384(7):1019-27. PubMed ID: 12956418
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of histone H1 and non-structured domains of core histones in maintaining the orientation of nucleosomes within the chromatin fiber.
    Makarov VL; Dimitrov SI; Tsaneva IR; Pashev IG
    Biochem Biophys Res Commun; 1984 Aug; 122(3):1021-7. PubMed ID: 6477546
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Planar model of nucleosome and chromatin structure of high orders].
    Priiatkina TN
    Biokhimiia; 1977 Nov; 42(11):1923-33. PubMed ID: 338036
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. The properties of the N-terminal and C-terminal halves of histone H1.
    Bradbury EM; Chapman GE; Danby SE; Hartman PG; Riches PL
    Eur J Biochem; 1975 Sep; 57(2):521-8. PubMed ID: 1175657
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermodynamic studies of the core histones: stability of the octamer subunits is not altered by removal of their terminal domains.
    Karantza V; Freire E; Moudrianakis EN
    Biochemistry; 2001 Oct; 40(43):13114-23. PubMed ID: 11669650
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [A new particle of chromatin obtained by proteolysis of histones with clostripain].
    Dumuis-Kervabon A; Parello J
    C R Acad Sci III; 1984; 299(7):185-8. PubMed ID: 6435815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isolation and characterisation of a 167 bp core particle isolated from stripped chicken erythrocyte chromatin.
    Lindsey GG; Thompson P
    Biochim Biophys Acta; 1989 Dec; 1009(3):257-63. PubMed ID: 2597676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.