These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 7160382)

  • 41. Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis.
    Chen H; Wang RF; Cerniglia CE
    Protein Expr Purif; 2004 Apr; 34(2):302-10. PubMed ID: 15003265
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A CASE-SAR study of mammalian hepatic azoreduction.
    Nesnow S; Bergman H; Bryant BJ; Helton S; Richard A
    J Toxicol Environ Health; 1988; 24(4):499-513. PubMed ID: 3411634
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enzymatic reduction of azo and indigoid compounds.
    Pricelius S; Held C; Murkovic M; Bozic M; Kokol V; Cavaco-Paulo A; Guebitz GM
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):321-7. PubMed ID: 17891390
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Construction of an integrated enzyme system consisting azoreductase and glucose 1-dehydrogenase for dye removal.
    Yang Y; Wei B; Zhao Y; Wang J
    Bioresour Technol; 2013 Feb; 130():517-21. PubMed ID: 23321587
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biotransformation and Detoxification of Xylidine Orange Dye Using Immobilized Cells of Marine-Derived Lysinibacillus sphaericus D3.
    Devi P; Wahidullah S; Sheikh F; Pereira R; Narkhede N; Amonkar D; Tilvi S; Meena RM
    Mar Drugs; 2017 Feb; 15(2):. PubMed ID: 28208715
    [No Abstract]   [Full Text] [Related]  

  • 46. Molecular determinants of azo reduction activity in the strain Pseudomonas putida MET94.
    Mendes S; Pereira L; Batista C; Martins LO
    Appl Microbiol Biotechnol; 2011 Oct; 92(2):393-405. PubMed ID: 21655981
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium.
    Pasti-Grigsby MB; Paszczynski A; Goszczynski S; Crawford DL; Crawford RL
    Appl Environ Microbiol; 1992 Nov; 58(11):3605-13. PubMed ID: 1482183
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression and characterization of the genes encoding azoreductases from Bacillus subtilis and Geobacillus stearothermophilus.
    Sugiura W; Yoda T; Matsuba T; Tanaka Y; Suzuki Y
    Biosci Biotechnol Biochem; 2006 Jul; 70(7):1655-65. PubMed ID: 16861800
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The decolorization and biodegrading metabolism of azo dyes by Pseudomonas S-42].
    Liu ZP; Yang HF
    Wei Sheng Wu Xue Bao; 1989 Dec; 29(6):418-26. PubMed ID: 2629295
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata.
    Eslami M; Amoozegar MA; Asad S
    Int J Biol Macromol; 2016 Apr; 85():111-6. PubMed ID: 26724685
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila.
    Hsueh CC; Chen BY; Yen CY
    J Hazard Mater; 2009 Aug; 167(1-3):995-1001. PubMed ID: 19237244
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of thermostable FMN-dependent NADH azoreductase from the moderate thermophile Geobacillus stearothermophilus.
    Matsumoto K; Mukai Y; Ogata D; Shozui F; Nduko JM; Taguchi S; Ooi T
    Appl Microbiol Biotechnol; 2010 May; 86(5):1431-8. PubMed ID: 19997911
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structures of AzrA and of AzrC complexed with substrate or inhibitor: insight into substrate specificity and catalytic mechanism.
    Yu J; Ogata D; Gai Z; Taguchi S; Tanaka I; Ooi T; Yao M
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):553-64. PubMed ID: 24531489
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cloning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonated azo dyes.
    Heiss GS; Gowan B; Dabbs ER
    FEMS Microbiol Lett; 1992 Dec; 78(2-3):221-6. PubMed ID: 1490602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterisation of the flavin-free oxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases.
    Bürger S; Stolz A
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2067-76. PubMed ID: 20508929
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploring effects of chemical structure on azo dye decolorization characteristics by Pseudomonas luteola.
    Hsueh CC; Chen BY
    J Hazard Mater; 2008 Jun; 154(1-3):703-10. PubMed ID: 18068895
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of a new oxygen-insensitive azoreductase from Brevibacillus laterosporus TISTR1911: toward dye decolorization using a packed-bed metal affinity reactor.
    Lang W; Sirisansaneeyakul S; Ngiwsara L; Mendes S; Martins LO; Okuyama M; Kimura A
    Bioresour Technol; 2013 Dec; 150():298-306. PubMed ID: 24177163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The reduction of azo dyes by the intestinal microflora.
    Chung KT; Stevens SE; Cerniglia CE
    Crit Rev Microbiol; 1992; 18(3):175-90. PubMed ID: 1554423
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Decolorization of textile dyes by Alishewanella sp. KMK6.
    Kolekar YM; Kodam KM
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):521-9. PubMed ID: 22089388
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of power ultrasound for azo dye degradation.
    Rehorek A; Tauber M; Gübitz G
    Ultrason Sonochem; 2004 May; 11(3-4):177-82. PubMed ID: 15081977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.