These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7160466)

  • 41. Lysophosphatidylcholine cell depolarization: increased membrane permeability for use in the determination of cell membrane potentials.
    Gallo RL; Wersto RP; Notter RH; Finkelstein JN
    Arch Biochem Biophys; 1984 Dec; 235(2):544-54. PubMed ID: 6517601
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An estimation of the light-induced electrochemical potential difference of protons across the membrane of Halobacterium halobium.
    Bakker EP; Rottenberg H; Caplan SR
    Biochim Biophys Acta; 1976 Sep; 440(3):557-72. PubMed ID: 9137
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of beta-adrenergic agonists on the membrane potential of fat-cell mitochondria in situ.
    Davis RJ; Martin BR
    Biochem J; 1982 Sep; 206(3):611-8. PubMed ID: 7150265
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Triggering of lymphocyte capping appears not to require changes in potential or ion fluxes across the plasma membrane.
    Montecucco C; Rink TJ; Pozzan T; Metcalfe JC
    Biochim Biophys Acta; 1980; 595(1):65-70. PubMed ID: 6985571
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells.
    Davis S; Weiss MJ; Wong JR; Lampidis TJ; Chen LB
    J Biol Chem; 1985 Nov; 260(25):13844-50. PubMed ID: 4055760
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calcium uptake and membrane potential in mitochondria.
    Rottenberg H; Scarpa A
    Biochemistry; 1974 Nov; 13(23):4811-7. PubMed ID: 4429666
    [No Abstract]   [Full Text] [Related]  

  • 47. Characterization of the plasma and mitochondrial membrane potentials of alveolar type II cells by the use of ionic probes.
    Gallo RL; Finkelstein JN; Notter RH
    Biochim Biophys Acta; 1984 Apr; 771(2):217-27. PubMed ID: 6704396
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria.
    Woelders H; van der Velden T; van Dam K
    Biochim Biophys Acta; 1988 Jun; 934(1):123-34. PubMed ID: 2837288
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Valinomycin-induced cation transport in vesicles does not reflect the activity of K+ transport systems in Escherichia coli.
    Altendorf K; Epstein W; Löhmann A
    J Bacteriol; 1986 Apr; 166(1):334-7. PubMed ID: 3514580
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Active transport of triphenylmethylphosphonium in mitochondria].
    Skul'skiĭ IA; Glazunov VV; Baklanova SM
    Biofizika; 1982; 27(3):480-4. PubMed ID: 7093333
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Induction of apoptosis by valinomycin: mitochondrial permeability transition causes intracellular acidification.
    Furlong IJ; Lopez Mediavilla C; Ascaso R; Lopez Rivas A; Collins MK
    Cell Death Differ; 1998 Mar; 5(3):214-21. PubMed ID: 10200467
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conformational model of active transport.
    Young JH; Blondin GA; Vanderkooi G; Green DE
    Proc Natl Acad Sci U S A; 1970 Oct; 67(2):550-9. PubMed ID: 5289009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Valinomycin inhibition of insulin release and alteration of the electrical properties of pancreatic B cells.
    Henquin JC; Meissner HP
    Biochim Biophys Acta; 1978 Nov; 543(4):455-64. PubMed ID: 363170
    [No Abstract]   [Full Text] [Related]  

  • 54. Estimation of membrane potentials of individual lymphocytes by flow cytometry.
    Shapiro HM; Natale PJ; Kamentsky LA
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5728-30. PubMed ID: 93281
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Study of the energy-dependent distribution of 42K+ between vesicles of the sarcoplasmic reticulum and the medium in the presence of valinomycin].
    Usmanov KKh; Zamaraeva MV; Gagel'gans AI; Tashmukhamedov BA
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1981; (9):19-24. PubMed ID: 7295830
    [No Abstract]   [Full Text] [Related]  

  • 56. Lymphocyte transformation and trans-membrane potential depressors.
    Santaló RC
    Exp Cell Res; 1975 Dec; 96(2):429-32. PubMed ID: 53159
    [No Abstract]   [Full Text] [Related]  

  • 57. Role of membrane potential in hypoxic inhibition of L-arginine uptake by lung endothelial cells.
    Zharikov SI; Herrera H; Block ER
    Am J Physiol; 1997 Jan; 272(1 Pt 1):L78-84. PubMed ID: 9038906
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ionophores and intact cells. I. Valinomycin and nigericin act preferentially on mitochondria and not on the plasma membrane of Saccharomyces cerevisiae.
    Kovác L; Böhmerová E; Butko P
    Biochim Biophys Acta; 1982 Dec; 721(4):341-8. PubMed ID: 6760898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Erroneous use of lipophilic phosphonic cations for determining mitochondrial membrane potential].
    Skul'skiĭ IA; Glazunov VV
    Tsitologiia; 1981 Apr; 23(4):458-60. PubMed ID: 7256848
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The membrane potential of Ehrlich ascites tumor cells: an evaluation of the null point method.
    Smith TC; Robinson SC
    J Cell Physiol; 1981 Mar; 106(3):399-406. PubMed ID: 7217220
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.