These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7160616)

  • 1. Peaks of neuronal membrane antigen and thyroxine in larval development of the Mexican axolotl.
    Rosenkilde P; Mogensen E; Centervall G; Jørgensen OS
    Gen Comp Endocrinol; 1982 Dec; 48(4):504-14. PubMed ID: 7160616
    [No Abstract]   [Full Text] [Related]  

  • 2. Luteinizing hormone-releasing hormone induces thyroxine release together with testosterone in the neotenic axolotl Ambystoma mexicanum.
    Jacobs GF; Kühn ER
    Gen Comp Endocrinol; 1988 Sep; 71(3):502-5. PubMed ID: 3056776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in brain gangliosides of the neotene and metamorphic (thyroxine-induced) newt axolotl (Ambystoma mexicanum).
    Hilbig R; Schmitt M; Rahmann H
    Dev Neurosci; 1987; 9(4):240-6. PubMed ID: 3428191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experiments on developing limb buds of the axolotl Ambystoma mexicanum.
    Maden M; Goodwin BC
    J Embryol Exp Morphol; 1980 Jun; 57():177-87. PubMed ID: 7430928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thyroxine-induced metamorphosis in the axolotl (Ambystoma mexicanum).
    Coots PS; Seifert AW
    Methods Mol Biol; 2015; 1290():141-5. PubMed ID: 25740483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microarray analysis of a salamander hopeful monster reveals transcriptional signatures of paedomorphic brain development.
    Page RB; Boley MA; Smith JJ; Putta S; Voss SR
    BMC Evol Biol; 2010 Jun; 10():199. PubMed ID: 20584293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Hormonal determination of the differentiation of striated skeletal muscle in urodele amphibians].
    Chanoine C; Janmot C; Guyot-Lenfant M; Durand JP; d'Albis A; Gallien CL
    Reprod Nutr Dev (1980); 1988; 28(3B):721-31. PubMed ID: 2973102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomics of a metamorphic timing QTL: met1 maps to a unique genomic position and regulates morph and species-specific patterns of brain transcription.
    Page RB; Boley MA; Kump DK; Voss SR
    Genome Biol Evol; 2013; 5(9):1716-30. PubMed ID: 23946331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pigmentary system of developing axolotls. I. A biochemical and structural analysis of chromatophores in wild-type axolotls.
    Frost SK; Epp LG; Robinson SJ
    J Embryol Exp Morphol; 1984 Jun; 81():105-25. PubMed ID: 6470605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Difference of the in vivo responsiveness to thyrotropin stimulation between the neotenic and metamorphosed axolotl, Ambystoma mexicanum: failure of prolactin to block the thyrotropin-induced thyroxine release.
    Darras VM; Kühn ER
    Gen Comp Endocrinol; 1984 Nov; 56(2):321-5. PubMed ID: 6510692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintenance of growth- and thyroid-stimulating properties of ectopic pituitaries in the Mexican axolotl (Ambystoma mexicanum).
    Schultheiss H
    Gen Comp Endocrinol; 1979 May; 38(1):75-83. PubMed ID: 467973
    [No Abstract]   [Full Text] [Related]  

  • 12. Low submetamorphic doses of dexamethasone and thyroxine induce complete metamorphosis in the axolotl (Ambystoma mexicanum) when injected together.
    Kühn ER; De Groef B; Grommen SV; Van der Geyten S; Darras VM
    Gen Comp Endocrinol; 2004 Jun; 137(2):141-7. PubMed ID: 15158126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum.
    Epperlein HH; Löfberg J
    Adv Anat Embryol Cell Biol; 1990; 118():1-99. PubMed ID: 2368640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of metamorphosis in axolotls (Ambystoma mexicanum).
    Page RB; Voss SR
    Cold Spring Harb Protoc; 2009 Aug; 2009(8):pdb.prot5268. PubMed ID: 20147244
    [No Abstract]   [Full Text] [Related]  

  • 15. Neural crest cell behavior in white and dark larvae of Ambystoma mexicanum: differences in cell morphology, arrangement, and extracellular matrix as related to migration.
    Spieth J; Keller RE
    J Exp Zool; 1984 Jan; 229(1):91-107. PubMed ID: 6699590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of an ultraviolet photoreception mechanism in the retina of an amphibian, the axolotl (Ambystoma mexicanum).
    Deutschlander ME; Phillips JB
    Neurosci Lett; 1995 Sep; 197(2):93-6. PubMed ID: 8552288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural crest cell behavior in white and dark larvae of Ambystoma mexicanum: time-lapse cinemicrographic analysis of pigment cell movement in vivo and in culture.
    Keller RE; Spieth J
    J Exp Zool; 1984 Jan; 229(1):109-26. PubMed ID: 6699589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thyroid hormone receptors and iodothyronine deiodinases in the developing Mexican axolotl, Ambystoma mexicanum.
    Galton VA
    Gen Comp Endocrinol; 1992 Jan; 85(1):62-70. PubMed ID: 1563619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Autoradiographic investigations on postnatal proliferative activity of the telencephalic and diencephalic matrix-zones in the axolotl (Ambystoma mexicanum), with special references to the olfactory organ (author's transl)].
    Richter W; Kranz D
    Z Mikrosk Anat Forsch; 1981; 95(6):883-904. PubMed ID: 7336815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontogeny of immunoglobulin expression in the Mexican axolotl.
    Fellah JS; Vaulot D; Tournefier A; Charlemagne J
    Development; 1989 Oct; 107(2):253-63. PubMed ID: 2698798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.