These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 7161218)
1. Ruminal VFA production with steers fed whole or ground corn grain. Sharp WM; Johnson RR; Owens FN J Anim Sci; 1982 Dec; 55(6):1505-14. PubMed ID: 7161218 [TBL] [Abstract][Full Text] [Related]
2. Splanchnic metabolism of volatile fatty acids absorbed from the washed reticulorumen of steers. Kristensen NB; Harmon DL J Anim Sci; 2004 Jul; 82(7):2033-42. PubMed ID: 15309950 [TBL] [Abstract][Full Text] [Related]
3. Effect of monensin on total volatile fatty acid production by steers fed a high grain diet. Shell LA; Hale WH; Theurer B; Swingle RS J Anim Sci; 1983 Jul; 57(1):178-85. PubMed ID: 6885658 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of predictions of volatile fatty acid production rates by the Molly cow model. Ghimire S; Gregorini P; Hanigan MD J Dairy Sci; 2014; 97(1):354-62. PubMed ID: 24268399 [TBL] [Abstract][Full Text] [Related]
6. Fermentation of eastern gamagrass (Tripsacum dactyloides [L.] L.) by mixed cultures of ruminal microorganisms with or without supplemental corn. Eun JS; Fellner V; Burns JC; Gumpertz ML J Anim Sci; 2004 Jan; 82(1):170-8. PubMed ID: 14753359 [TBL] [Abstract][Full Text] [Related]
7. Production of volatile fatty acids in the rumen and cecum-colon of steers as affected by forage:concentrate and forage physical form. Siciliano-Jones J; Murphy MR J Dairy Sci; 1989 Feb; 72(2):485-92. PubMed ID: 2703570 [TBL] [Abstract][Full Text] [Related]
8. Comparison of techniques to determine the clearance of ruminal volatile fatty acids. Resende Júnior JC; Pereira MN; Bôer H; Tamminga S J Dairy Sci; 2006 Aug; 89(8):3096-106. PubMed ID: 16840627 [TBL] [Abstract][Full Text] [Related]
9. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis. Golder HM; Denman SE; McSweeney C; Wales WJ; Auldist MJ; Wright MM; Marett LC; Greenwood JS; Hannah MC; Celi P; Bramley E; Lean IJ J Dairy Sci; 2014 Sep; 97(9):5763-85. PubMed ID: 24997657 [TBL] [Abstract][Full Text] [Related]
10. Starch source evaluation in calf starter: II. Ruminal parameters, rumen development, nutrient digestibilities, and nitrogen utilization in Holstein calves. Khan MA; Lee HJ; Lee WS; Kim HS; Kim SB; Park SB; Baek KS; Ha JK; Choi YJ J Dairy Sci; 2008 Mar; 91(3):1140-9. PubMed ID: 18292270 [TBL] [Abstract][Full Text] [Related]
11. Influence of supplemental chromium on concentrations of liver triglyceride, blood metabolites and rumen VFA profile in steers fed a moderately high fat diet. Besong S; Jackson JA; Trammell DS; Akay V J Dairy Sci; 2001 Jul; 84(7):1679-85. PubMed ID: 11467818 [TBL] [Abstract][Full Text] [Related]
12. Production and metabolism of volatile fatty acids, glucose and CO2 in steers and the effects of monensin on volatile fatty acid kinetics. Armentano LE; Young JW J Nutr; 1983 Jun; 113(6):1265-77. PubMed ID: 6406652 [TBL] [Abstract][Full Text] [Related]
13. The relationship between rumen acidosis resistance and expression of genes involved in regulation of intracellular pH and butyrate metabolism of ruminal epithelial cells in steers. Schlau N; Guan LL; Oba M J Dairy Sci; 2012 Oct; 95(10):5866-75. PubMed ID: 22863095 [TBL] [Abstract][Full Text] [Related]
14. Genetic parameters of plasma and ruminal volatile fatty acids in sheep fed alfalfa pellets and genetic correlations with enteric methane emissions1. Jonker A; Hickey SM; McEwan JC; Rowe SJ; Janssen PH; MacLean S; Sandoval E; Lewis S; Kjestrup H; Molano G; Agnew M; Young EA; Dodds KG; Knowler K; Pinares-Patiño CS J Anim Sci; 2019 Jul; 97(7):2711-2724. PubMed ID: 31212318 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows. Morvay Y; Bannink A; France J; Kebreab E; Dijkstra J J Dairy Sci; 2011 Jun; 94(6):3063-80. PubMed ID: 21605776 [TBL] [Abstract][Full Text] [Related]
16. Effects of the interaction of forage and supplement type on digestibility and ruminal fermentation in beef cattle. Stierwalt MR; Blalock HM; Felix TL J Anim Sci; 2017 Feb; 95(2):892-900. PubMed ID: 28380592 [TBL] [Abstract][Full Text] [Related]
17. Effect of increasing ruminal butyrate absorption on splanchnic metabolism of volatile fatty acids absorbed from the washed reticulorumen of steers. Kristensen NB; Harmon DL J Anim Sci; 2004 Dec; 82(12):3549-59. PubMed ID: 15537776 [TBL] [Abstract][Full Text] [Related]
18. Influence of maturity of grass silage and flaked corn starch on the production and metabolism of volatile fatty acids in dairy cows. De Visser H; Klop A; van der Meulen J; van Vuuren AM J Dairy Sci; 1998 Apr; 81(4):1028-35. PubMed ID: 9594392 [TBL] [Abstract][Full Text] [Related]
19. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. Russell JB J Dairy Sci; 1998 Dec; 81(12):3222-30. PubMed ID: 9891267 [TBL] [Abstract][Full Text] [Related]
20. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows. Storm AC; Kristensen NB; Hanigan MD J Dairy Sci; 2012 Jun; 95(6):2919-34. PubMed ID: 22612930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]