These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 7161256)
1. Studies on reconstituted myoglobins and hemoglobins. I. Role of the heme side chains in the oxygenation of myoglobin. Kawabe K; Imaizumi K; Imai K; Tyuma I; Ogoshi H; Iwahara T; Yoshida Z J Biochem; 1982 Dec; 92(6):1703-12. PubMed ID: 7161256 [TBL] [Abstract][Full Text] [Related]
2. Studies on reconstituted myoglobins and hemoglobins. II. Role of the heme side chains in the oxygenation of hemoglobin. Kawabe K; Imaizumi K; Yoshida Z; Imai K; Tyuma I J Biochem; 1982 Dec; 92(6):1713-22. PubMed ID: 7161257 [TBL] [Abstract][Full Text] [Related]
3. Crystal structures of modified myoglobins. II. Relation between oxygen affinity properties and structural changes around heme in myoglobins reconstituted with 2,4-diisopropyldeuteroheme, 2-isopropyl-4-vinyldeuteroheme, and 2-vinyl-4-isopropyldeuteroheme. Miki K; Harada S; Hato Y; Iba S; Kai Y; Kasai N; Katsube Y; Kawabe K; Yoshida Z; Ogoshi H J Biochem; 1986 Aug; 100(2):277-84. PubMed ID: 3782052 [TBL] [Abstract][Full Text] [Related]
4. Decrease in oxygen affinity of myoglobin by formylation of vinyl groups of heme. Sono M; Asakura T J Biol Chem; 1975 Jul; 250(13):5227-32. PubMed ID: 1150657 [TBL] [Abstract][Full Text] [Related]
5. Effects of formylation of vinyl side chains of heme on optical and ligand binding properties of horse heart ferric myoglobin. Sono M; Asakura T J Biol Chem; 1976 May; 251(9):2664-70. PubMed ID: 4456 [TBL] [Abstract][Full Text] [Related]
6. Crystal structures of modified myoglobins. I. Heme orientation and structural changes around heme in myoglobins reconstituted with isopemptoheme, pemptoheme, 2-ethyldeuteroheme, and 4-ethyldeuteroheme. Miki K; Il Y; Yukawa M; Owatari A; Hato Y; Harada S; Kai Y; Kasai N; Hata Y; Tanaka N J Biochem; 1986 Aug; 100(2):269-76. PubMed ID: 3782051 [TBL] [Abstract][Full Text] [Related]
7. Structure and ligand binding properties of myoglobins reconstituted with monodepropionated heme: functional role of each heme propionate side chain. Harada K; Makino M; Sugimoto H; Hirota S; Matsuo T; Shiro Y; Hisaeda Y; Hayashi T Biochemistry; 2007 Aug; 46(33):9406-16. PubMed ID: 17636874 [TBL] [Abstract][Full Text] [Related]
8. Kinetic study of CO and O2 binding to horse heart myoglobin reconstituted with synthetic hemes lacking methyl and vinyl side chains. Chang CK; Ward B; Ebina S Arch Biochem Biophys; 1984 Jun; 231(2):366-71. PubMed ID: 6732238 [TBL] [Abstract][Full Text] [Related]
9. Kinetic and equilibrium studies of the reactions of heme-substituted horse heart myoglobins with oxygen and carbon monoxide. Sono M; Smith PD; McCray JA; Asakura T J Biol Chem; 1976 Mar; 251(5):1418-26. PubMed ID: 1254575 [TBL] [Abstract][Full Text] [Related]
10. Oxygenation and EPR spectral properties of Aplysia myoglobins containing cobaltous porphyrins. Ikeda-Saito M; Brunori M; Yonetani T Biochim Biophys Acta; 1978 Mar; 533(1):173-80. PubMed ID: 205264 [TBL] [Abstract][Full Text] [Related]
11. Kinetic studies on CO binding to reconstituted myoglobins with four synthetic hemes; structural control in ligand binding to myoglobin. Sato T; Tanaka N; Neya S; Funasaki N; Iizuka T; Shiro Y Biochim Biophys Acta; 1992 May; 1121(1-2):1-7. PubMed ID: 1599931 [TBL] [Abstract][Full Text] [Related]
12. Utility of heme analogues to intentionally modify heme-globin interactions in myoglobin. Neya S; Nagai M; Nagatomo S; Hoshino T; Yoneda T; Kawaguchi AT Biochim Biophys Acta; 2016 May; 1857(5):582-588. PubMed ID: 26435388 [TBL] [Abstract][Full Text] [Related]
13. Horse heart myoglobin reconstituted with a symmetrical heme. A circular dichroism study. Santucci R; Ascoli F; La Mar GN; Parish DW; Smith KM Biophys Chem; 1990 Aug; 37(1-3):251-5. PubMed ID: 2285786 [TBL] [Abstract][Full Text] [Related]
15. Stabilizing bound O2 in myoglobin by valine68 (E11) to asparagine substitution. Krzywda S; Murshudov GN; Brzozowski AM; Jaskolski M; Scott EE; Klizas SA; Gibson QH; Olson JS; Wilkinson AJ Biochemistry; 1998 Nov; 37(45):15896-907. PubMed ID: 9843395 [TBL] [Abstract][Full Text] [Related]
16. Identification of the titrating group in the heme cavity of myoglobin. Evidence for the heme-protein pi-pi interaction. Krishnamoorthi R; La Mar GN Eur J Biochem; 1984 Jan; 138(1):135-40. PubMed ID: 6692820 [TBL] [Abstract][Full Text] [Related]
17. Waterproofing the heme pocket. Role of proximal amino acid side chains in preventing hemin loss from myoglobin. Liong EC; Dou Y; Scott EE; Olson JS; Phillips GN J Biol Chem; 2001 Mar; 276(12):9093-100. PubMed ID: 11084036 [TBL] [Abstract][Full Text] [Related]
18. Effects of solvent on the absorption maxima of five-coordinate heme complexes and carbon monoxide-heme complexes as models for the differential spectral properties of hemoglobins and myoglobins. Romberg RW; Kassner RJ Biochemistry; 1982 Mar; 21(5):880-6. PubMed ID: 7074058 [TBL] [Abstract][Full Text] [Related]
19. Relationship between oxygen affinity and autoxidation of myoglobin. Shibata T; Matsumoto D; Nishimura R; Tai H; Matsuoka A; Nagao S; Matsuo T; Hirota S; Imai K; Neya S; Suzuki A; Yamamoto Y Inorg Chem; 2012 Nov; 51(21):11955-60. PubMed ID: 23082875 [TBL] [Abstract][Full Text] [Related]
20. Effect of heme modification on oxygen affinity of myoglobin and equilibrium of the acid-alkaline transition in metmyoglobin. Shibata T; Nagao S; Fukaya M; Tai H; Nagatomo S; Morihashi K; Matsuo T; Hirota S; Suzuki A; Imai K; Yamamoto Y J Am Chem Soc; 2010 May; 132(17):6091-8. PubMed ID: 20392104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]