These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. [Photochemical intermediates of rhodopsin--low temperature spectrophotometry and spectroscopy]. Shichida Y Tanpakushitsu Kakusan Koso; 1985 Sep; (28):64-72. PubMed ID: 3909227 [No Abstract] [Full Text] [Related]
5. Retinal analog study of the role of steric interactions in the excited state isomerization dynamics of rhodopsin. Kochendoerfer GG; Verdegem PJ; van der Hoef I; Lugtenburg J; Mathies RA Biochemistry; 1996 Dec; 35(50):16230-40. PubMed ID: 8973196 [TBL] [Abstract][Full Text] [Related]
6. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction]. Orlov NIa; Fesenko EE Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116 [TBL] [Abstract][Full Text] [Related]
7. Picosecond kinetic absorption and fluorescence studies of bovine rhodopsin with a fixed 11-ene. Buchert J; Stefancic V; Doukas AG; Alfano RR; Callender RH; Pande J; Akita H; Balogh-Nair V; Nakanishi K Biophys J; 1983 Sep; 43(3):279-83. PubMed ID: 6626668 [TBL] [Abstract][Full Text] [Related]
8. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments. Kuwayama S; Imai H; Morizumi T; Shichida Y Biochemistry; 2005 Feb; 44(6):2208-15. PubMed ID: 15697246 [TBL] [Abstract][Full Text] [Related]
9. A new approach to understanding the initial step in visual transduction. Milder SJ; Kliger DS Biophys J; 1986 Feb; 49(2):567-70. PubMed ID: 3955186 [TBL] [Abstract][Full Text] [Related]
10. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin. Fishkin N; Berova N; Nakanishi K Chem Rec; 2004; 4(2):120-35. PubMed ID: 15073879 [TBL] [Abstract][Full Text] [Related]
11. Bathoproducts of rhodopsin, isorhodopsin I, and isorhodopsin II. Mao B; Ebrey TG; Crouch R Biophys J; 1980 Feb; 29(2):247-56. PubMed ID: 7260250 [TBL] [Abstract][Full Text] [Related]
12. On the correlation between light-induced protein fluorescence changes and the formation of metarhodopsin III465 in bovine photoreceptor disk membranes. Chiba T; Asai H; Suzuki H Biochem Biophys Res Commun; 1980 Feb; 92(3):853-9. PubMed ID: 7362609 [No Abstract] [Full Text] [Related]
13. Primary intermediates of rhodopsin studied by low temperature spectrophotometry and laser photolysis. Bathorhodopsin, hypsorhodopsin and photorhodopsin. Yoshizawa T; Shichida Y; Matuoka S Vision Res; 1984; 24(11):1455-63. PubMed ID: 6398559 [TBL] [Abstract][Full Text] [Related]
14. Dynamic processes of visual transduction. Applebury ML Vision Res; 1984; 24(11):1445-54. PubMed ID: 6533979 [TBL] [Abstract][Full Text] [Related]
15. Low-temperature spectrophotometry of intermediates of rhodopsin. Yoshizawa T; Shichida Y Methods Enzymol; 1982; 81():333-54. PubMed ID: 7098878 [No Abstract] [Full Text] [Related]
17. Modelling of photointermediates suggests a mechanism of the flip of the beta-ionone moiety of the retinylidene chromophore in the rhodopsin photocascade. Ishiguro M; Hirano T; Oyama Y Chembiochem; 2003 Mar; 4(2-3):228-31. PubMed ID: 12616639 [No Abstract] [Full Text] [Related]
18. Time-resolved spectroscopy of the early photolysis intermediates of rhodopsin Schiff base counterion mutants. Jäger S; Lewis JW; Zvyaga TA; Szundi I; Sakmar TP; Kliger DS Biochemistry; 1997 Feb; 36(8):1999-2009. PubMed ID: 9047297 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of rhodopsin at room temperature measured by picosecond spectroscopy. Sundstrom V; Rentzepis PM; Peters K; Applebury ML Nature; 1977 Jun; 267(5612):645-6. PubMed ID: 559949 [No Abstract] [Full Text] [Related]
20. The structure of the retinylidene chromophore in bathorhodopsin. Lewis A Biophys J; 1978 Oct; 24(1):249-54. PubMed ID: 708828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]