These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7163383)

  • 61. Age-related alterations in dopamine and norepinephrine activity within microdissected brain regions of ovariectomized Long Evans rats.
    Estes KS; Simpkins JW
    Brain Res; 1984 Apr; 298(2):209-18. PubMed ID: 6609745
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Operant control of turning in circles: a new model of dopaminergic drug action.
    Glick SD
    Brain Res; 1982 Aug; 245(2):394-7. PubMed ID: 6889903
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Interactions between the basal ganglia, the pontine parabrachial region, and the trigeminal system in cat.
    Schneider JS
    Neuroscience; 1986 Oct; 19(2):411-25. PubMed ID: 3774149
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The effects of fixed-interval schedules on variability of pigeons' pecking location.
    Kono M
    J Exp Anal Behav; 2017 Sep; 108(2):290-304. PubMed ID: 28940394
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of d-amphetamine and apomorphine upon operant behavior and schedule-induced licking in rats with 6-hydroxydopamine-induced lesions of the nucleus accumbens.
    Robbins TW; Roberts DC; Koob GF
    J Pharmacol Exp Ther; 1983 Mar; 224(3):662-73. PubMed ID: 6402587
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Catecholamine alterations in basal ganglia after hippocampal lesions.
    Springer JE; Isaacson RL
    Brain Res; 1982 Dec; 252(1):185-8. PubMed ID: 7172020
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effects of unsignaled delays of reinforcement on fixed-interval schedule performance.
    Elcoro M; Lattal KA
    Behav Processes; 2011 Sep; 88(1):47-52. PubMed ID: 21801816
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Neuroleptic-like disruption of the conditioned avoidance response requires destruction of both the mesolimbic and nigrostriatal dopamine systems.
    Koob GF; Simon H; Herman JP; Le Moal M
    Brain Res; 1984 Jun; 303(2):319-29. PubMed ID: 6430466
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Phosphodiesterase 10A controls D1-mediated facilitation of GABA release from striato-nigral projections under normal and dopamine-depleted conditions.
    Mango D; Bonito-Oliva A; Ledonne A; Nisticò R; Castelli V; Giorgi M; Sancesario G; Fisone G; Berretta N; Mercuri NB
    Neuropharmacology; 2014 Jan; 76 Pt A():127-36. PubMed ID: 23973317
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Strain differences in catecholamine content of pigeon brains.
    Divac I; Mogensen J; Björklund A
    Brain Res; 1988 Mar; 444(2):371-3. PubMed ID: 3359303
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Organization of 'feeding circuits' in birds: pathways for the control of beak and head movements.
    Dubbeldam JL; Den Boer-Visser AM
    Eur J Morphol; 1994 Aug; 32(2-4):127-33. PubMed ID: 7803158
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Morphological and biochemical adaptations to unilateral dopamine denervation of the neostriatum in newborn rats.
    Penit-Soria J; Durand C; Herve D; Besson MJ
    Neuroscience; 1997 Apr; 77(3):753-66. PubMed ID: 9070750
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of avian basal forebrain lesions, including septum, on heart rate conditioning.
    Cohen DH; Goff DM
    Brain Res Bull; 1978; 3(4):311-8. PubMed ID: 318200
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The prefrontal "cortex" in the pigeon catecholamine histofluorescence.
    Divac I; Mogensen J
    Neuroscience; 1985 Jul; 15(3):677-82. PubMed ID: 4069352
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Paleostriatal lesions and instrumental learning in the pigeon.
    Mitchell JA; Hall G
    Q J Exp Psychol B; 1984 May; 36(2):93-117. PubMed ID: 6539939
    [No Abstract]   [Full Text] [Related]  

  • 76. The role of basal ganglia in reinforcement learning and imprinting in domestic chicks.
    Izawa E; Yanagihara S; Atsumi T; Matsushima T
    Neuroreport; 2001 Jun; 12(8):1743-7. PubMed ID: 11409751
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Norepinephrine uptake is enhanced in discrete telencephalic and diencephalic areas and nuclei in prehepatic portal hypertensive rats.
    Lemberg A; Perazzo J; Romay S; Eizayaga F; Vatta M; Rodriguez-Fermepin M; Bianciotti L; Monserrat A; Fernandez B
    Brain Res Bull; 1998; 45(2):153-6. PubMed ID: 9443832
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Frontal forebrain lesions: effects on the foraging and apomorphine pecking of pigeons.
    Wynne B; Delius JD
    Physiol Behav; 1996; 59(4-5):757-62. PubMed ID: 8778863
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Operant escape learning in decerebrate duck embryos.
    Heaton MB; Galleher EL; Baker RT; Otero JM; Alvarez IM
    J Comp Physiol Psychol; 1981 Apr; 95(2):199-204. PubMed ID: 7229156
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sequential neural information processing in nidopallium caudolaterale of pigeons during the acquisition process of operant conditioning.
    Shang Z; Liang Y; Li M; Zhao K; Yang L; Wan H
    Neuroreport; 2019 Oct; 30(14):966-973. PubMed ID: 31469717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.