These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7163952)

  • 1. Genetic analysis of tumorigenesis: XII. Genetic control of the anchorage requirement in CHEF cells.
    Marshall CJ; Kitchin RM; Sager R
    Somatic Cell Genet; 1982 Nov; 8(6):709-21. PubMed ID: 7163952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic analysis of tumorigenesis: IX Suppression of anchorage independence in hybrids between transformed hamster cell lines.
    Marshall CJ; Sager R
    Somatic Cell Genet; 1981 Nov; 7(6):713-23. PubMed ID: 7323949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis of tumorigenesis: XXI. Suppressor genes in CHEF cells.
    Smith BL; Sager R
    Somat Cell Mol Genet; 1985 Jan; 11(1):25-34. PubMed ID: 3856329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of tumorigenesis. XXXI: Retention of short arm of chromosome 3 in suppressed CHEF cell hybrids containing c-Ha-ras (EJ) gene.
    Craig RW; Gadi IK; Sager R
    Somat Cell Mol Genet; 1988 Jan; 14(1):41-53. PubMed ID: 3277292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of tumorigenesis: X. Chromosome studies of transformed mutants and tumor-derived CHEF/18 cells.
    Kitchin RM; Gadi IK; Smith BL; Sager R
    Somatic Cell Genet; 1982 Sep; 8(5):677-89. PubMed ID: 7135168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Preferential retention of the mink chromosome group in somatic cell hybrids of Chinese hamster and American mink].
    Rubtsov NB; Shverin M; Kulichkov VA; Radzhabli SI
    Tsitol Genet; 1982; 16(3):17-22. PubMed ID: 7101453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistep origin of tumor-forming ability in Chinese hamster embryo fibroblast cells.
    Smith BL; Sager R
    Cancer Res; 1982 Feb; 42(2):389-96. PubMed ID: 6799186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Isolation and characteristics of somatic cell hybrids of the Chinese hamster and American mink].
    Rubtsov NB; Radzhabli SI; Gradov AA; Serov OL
    Tsitol Genet; 1981; 15(3):54-8. PubMed ID: 6942558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic analysis of tumorigenesis: VI. Chromosome rearrangements in tumors derived from diploid premalignant Chinese hamster cells in nude mice.
    Kitchin RM; Sager R
    Somatic Cell Genet; 1980 Sep; 6(5):615-30. PubMed ID: 7434146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic analysis of tumorigenesis: V. Chromosomal analysis of tumorigenic and nontumorigenic diploid chinese hamster cell lines.
    Kitchin RM; Sager R
    Somatic Cell Genet; 1980 Jan; 6(1):75-87. PubMed ID: 7368047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppressor genes for malignant and anchorage-independent phenotypes located on human chromosome 9 have no dosage effects.
    Islam MQ; Islam K
    Cytogenet Cell Genet; 2000; 88(1-2):103-9. PubMed ID: 10773681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of tumorigenicity in hybrids of tumorigenic Chinese hamster cells and diploid mouse fibroblasts: dependence on the presence of at least three different mouse chromosomes and independence of hamster genome dosage.
    Schäfer R; Hoffmann H; Willecke K
    Cancer Res; 1983 May; 43(5):2240-6. PubMed ID: 6831446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of tumor suppression but induced loss of copies of indigenous chromosome 10 in vitro following microcell-mediated transfer of a deleted human der(9)t(X;9) chromosome to Syrian hamster BHK-191-5C cells.
    Islam MQ; Islam K
    Cytogenet Cell Genet; 1999; 87(1-2):11-8. PubMed ID: 10640804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marker segregation without chromosome loss at the emt locus in Chinese hamster cell hybrids.
    Worton RG; Duff C; Campbell CE
    Somatic Cell Genet; 1980 Mar; 6(2):199-213. PubMed ID: 6930703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of tumorigenesis: IV. Chromosome reduction and marker segregation in progeny clones from Chinese hamster cell hybrids.
    Sager R; Kovac PE
    Somatic Cell Genet; 1979 Jul; 5(4):491-502. PubMed ID: 291130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional hemi- and dizygous Chinese hamster chromosome 2 gene loci in CHO cells.
    Stallings RL; Siciliano MJ; Adair GM; Humphrey RM
    Somatic Cell Genet; 1982 Jul; 8(4):413-22. PubMed ID: 7123449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic analysis of transformed and malignant phenotypes in somatic cell hybrids between tumorigenic Chinese hamster cells and diploid mouse fibroblasts.
    Schäfer R; Doehmer J; Drüge PM; Rademacher I; Willecke K
    Cancer Res; 1981 Mar; 41(3):1214-21. PubMed ID: 7459862
    [No Abstract]   [Full Text] [Related]  

  • 18. Specific chromosomal aberrations correlated to transformation in Chinese hamster cells.
    Simi S; Musio A; Vatteroni L; Piras A; Rainaldi G
    Cancer Genet Cytogenet; 1992 Aug; 62(1):81-7. PubMed ID: 1521240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of tumorigenicity in hybrids of normal and oncogene-transformed CHEF cells.
    Craig RW; Sager R
    Proc Natl Acad Sci U S A; 1985 Apr; 82(7):2062-6. PubMed ID: 3856884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonrandom chromosomal alterations in nickel-transformed Chinese hamster embryo cells.
    Conway K; Costa M
    Cancer Res; 1989 Nov; 49(21):6032-8. PubMed ID: 2790817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.