These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 7165690)

  • 21. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses.
    Bureau TE; Wessler SR
    Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1411-5. PubMed ID: 8108422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromosomal location of genes coding for endosperm proteins of Hordeum chilense, determined by two-dimensional electrophoresis of wheat-H. chilense chromosome addition lines.
    Payne PI; Holt LM; Reader SM; Miller TE
    Biochem Genet; 1987 Feb; 25(1-2):53-65. PubMed ID: 3579867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unusual features of cereal seed protein structure and evolution.
    Kreis M; Shewry PR
    Bioessays; 1989 Jun; 10(6):201-7. PubMed ID: 2662966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uncovering the evolutionary origin of blue anthocyanins in cereal grains.
    Jia Y; Selva C; Zhang Y; Li B; McFawn LA; Broughton S; Zhang X; Westcott S; Wang P; Tan C; Angessa T; Xu Y; Whitford R; Li C
    Plant J; 2020 Mar; 101(5):1057-1074. PubMed ID: 31571294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conserved noncoding sequences among cultivated cereal genomes identify candidate regulatory sequence elements and patterns of promoter evolution.
    Guo H; Moose SP
    Plant Cell; 2003 May; 15(5):1143-58. PubMed ID: 12724540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. cDNA cloning and gene expression of the major prolamins of rice.
    Shyur LF; Wen TN; Chen CS
    Plant Mol Biol; 1992 Oct; 20(2):323-6. PubMed ID: 1391776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid evolutionary dynamics in a 2.8-Mb chromosomal region containing multiple prolamin and resistance gene families in Aegilops tauschii.
    Dong L; Huo N; Wang Y; Deal K; Wang D; Hu T; Dvorak J; Anderson OD; Luo MC; Gu YQ
    Plant J; 2016 Sep; 87(5):495-506. PubMed ID: 27228577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The amplification and evolution of orthologous 22-kDa α-prolamin tandemly arrayed genes in coix, sorghum and maize genomes.
    Zhou L; Huang B; Meng X; Wang G; Wang F; Xu Z; Song R
    Plant Mol Biol; 2010 Dec; 74(6):631-43. PubMed ID: 20938800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The γ-gliadin-like γ-prolamin genes in the tribe Triticeae.
    Qi PF; Le CX; Wang Z; Liu YB; Chen Q; Wei ZZ; Xu BJ; Wei ZY; Dai SF; Wei YM; Zheng YL
    J Genet; 2014 Apr; 93(1):35-41. PubMed ID: 24840821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular, phylogenetic and comparative genomic analysis of the cytokinin oxidase/dehydrogenase gene family in the Poaceae.
    Mameaux S; Cockram J; Thiel T; Steuernagel B; Stein N; Taudien S; Jack P; Werner P; Gray JC; Greenland AJ; Powell W
    Plant Biotechnol J; 2012 Jan; 10(1):67-82. PubMed ID: 21838715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amplification of prolamin storage protein genes in different subfamilies of the Poaceae.
    Xu JH; Messing J
    Theor Appl Genet; 2009 Nov; 119(8):1397-412. PubMed ID: 19727653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzyme-linked immunosorbent assay for quantitation of cereal proteins toxic in coeliac disease.
    Friis SU
    Clin Chim Acta; 1988 Dec; 178(3):261-70. PubMed ID: 3240601
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies of the zein-like alpha-prolamins based on an analysis of amino acid sequences: implications for their evolution and three-dimensional structure.
    Garratt R; Oliva G; Caracelli I; Leite A; Arruda P
    Proteins; 1993 Jan; 15(1):88-99. PubMed ID: 8451243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In silico analysis of sequential, structural and functional diversity of wheat cystatins and its implication in plant defense.
    Dutt S; Singh VK; Marla SS; Kumar A
    Genomics Proteomics Bioinformatics; 2010 Mar; 8(1):42-56. PubMed ID: 20451161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of cereal toxicity for celiac disease patients based on protein homology in grains.
    Vader LW; Stepniak DT; Bunnik EM; Kooy YM; de Haan W; Drijfhout JW; Van Veelen PA; Koning F
    Gastroenterology; 2003 Oct; 125(4):1105-13. PubMed ID: 14517794
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species.
    Nomura T; Ishihara A; Imaishi H; Ohkawa H; Endo TR; Iwamura H
    Planta; 2003 Sep; 217(5):776-82. PubMed ID: 12734755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunological characterization of the gluten fractions and their hydrolysates from wheat, rye and barley.
    Rallabhandi P; Sharma GM; Pereira M; Williams KM
    J Agric Food Chem; 2015 Feb; 63(6):1825-32. PubMed ID: 25619974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High gene density is conserved at syntenic loci of small and large grass genomes.
    Feuillet C; Keller B
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):8265-70. PubMed ID: 10393983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The prolamin storage proteins of wheat and related cereals.
    Shewry PR; Miles MJ; Tatham AS
    Prog Biophys Mol Biol; 1994; 61(1):37-59. PubMed ID: 8202599
    [No Abstract]   [Full Text] [Related]  

  • 40. Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses.
    Castleden CK; Aoki N; Gillespie VJ; MacRae EA; Quick WP; Buchner P; Foyer CH; Furbank RT; Lunn JE
    Plant Physiol; 2004 Jul; 135(3):1753-64. PubMed ID: 15247374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.