These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
58 related articles for article (PubMed ID: 716708)
1. [Ionic conductivity of muscle fiber membranes of Locusta migratoria]. Zakhar I; Zakharova D; Genchek M; Mandel'shtam IuE; Ugrik B Zh Evol Biokhim Fiziol; 1978; 14(5):467-74. PubMed ID: 716708 [TBL] [Abstract][Full Text] [Related]
2. Potassium concentration changes in the transverse tubules of vertebrate skeletal muscle. Almers W Fed Proc; 1980 Apr; 39(5):1527-32. PubMed ID: 7364047 [TBL] [Abstract][Full Text] [Related]
3. Influence of changes in external potassium and chloride ions on membrane potential and intracellular potassium ion activity in rabbit ventricular muscle. Fozzard HA; Lee CO J Physiol; 1976 Apr; 256(3):663-89. PubMed ID: 1271296 [TBL] [Abstract][Full Text] [Related]
4. [Effect of the membrane potential on the Mg2+,ATP-dependent transport of Ca2+ across smooth muscle sarcolemma]. Babich LG; Fomin VP; Kosterin SA Biokhimiia; 1990 Oct; 55(10):1890-901. PubMed ID: 2078629 [TBL] [Abstract][Full Text] [Related]
5. The resting membrane parameters of human intercostal muscle at low, normal, and high extracellular potassium. Kwieciński H; Lehmann-Horn F; Rüdel R Muscle Nerve; 1984 Jan; 7(1):60-5. PubMed ID: 6700631 [TBL] [Abstract][Full Text] [Related]
6. Contributions of electrogenic pumps to resting membrane potentials: the theory of electrogenic potentials. Sjodin RA Soc Gen Physiol Ser; 1984; 38():105-27. PubMed ID: 6320455 [TBL] [Abstract][Full Text] [Related]
7. Anomalous response to potassium in vascular smooth muscle cells of human saphenous vein. Bieger D; Mong K; Tabrizchi R Auton Autacoid Pharmacol; 2006 Jan; 26(1):1-6. PubMed ID: 16371060 [TBL] [Abstract][Full Text] [Related]
8. [Study of the electric properties of the unfolded membrane of muscle fibers in Balanus (a possible mechanism of selective permeability to ions and rectification of electric curren by cell membranes)]. Kovalev SA; Liberman EA; Chaĭlakhian LM Biofizika; 1966; 11(4):621-5. PubMed ID: 6000620 [No Abstract] [Full Text] [Related]
9. Permeability properties and intracellular ion concentrations of epithelial cells in rat duodenum. Okada Y; Irimajiri A; Inouye A Biochim Biophys Acta; 1976 Jun; 436(1):15-24. PubMed ID: 1276210 [TBL] [Abstract][Full Text] [Related]
10. The effect of potassium and chloride ions on the volume and membrane potential of single barnacle muscle cells. Mobley BA; Page E J Physiol; 1971 May; 215(1):49-70. PubMed ID: 5579676 [TBL] [Abstract][Full Text] [Related]
11. Relative ion permeabilities in the crayfish giant axon determined from rapid external ion changes. Strickholm A; Wallin BG J Gen Physiol; 1967 Aug; 50(7):1929-53. PubMed ID: 6050974 [TBL] [Abstract][Full Text] [Related]
12. Distribution of potassium and chloride permeability over the surface and T-tubule membranes of mammalian skeletal muscle. Dulhunty AF J Membr Biol; 1979 Apr; 45(3-4):293-310. PubMed ID: 458844 [TBL] [Abstract][Full Text] [Related]
13. The influence of potassium and chloride ions on the membrane potential of single muscle fibers of the crayfish. Hinkle M; Heller P; Van der Kloot W Comp Biochem Physiol A Comp Physiol; 1971 Sep; 40(1):181-201. PubMed ID: 4401094 [No Abstract] [Full Text] [Related]
14. A comparison of ion concentrations, potentials and conductances of amphibian, bovine and cephalopod lenses. Delamere NA; Duncan G J Physiol; 1977 Oct; 272(1):167-86. PubMed ID: 304100 [TBL] [Abstract][Full Text] [Related]
15. Functional heterogeneity of the "transporter" of electrogenic ionic pump of the Lumbricus terrestris somatic myocyte membrane. Volkov EM; Sabirova AR; Nurullin LF; Zefirov AL Bull Exp Biol Med; 2006 Dec; 142(6):720-2. PubMed ID: 17603680 [TBL] [Abstract][Full Text] [Related]
16. INFLUENCE OF SOME IONS ON THE MEMBRANE POTENTIAL OF ASCARIS MUSCLE. DELCASTILLO J; DEMELLO WC; MORALES T J Gen Physiol; 1964 Sep; 48(1):129-40. PubMed ID: 14212144 [TBL] [Abstract][Full Text] [Related]
17. Decreased K+ conductance produced by Ba++ in frog sartorius fibers. Sperelakis N; Schneider MF; Harris EJ J Gen Physiol; 1967 Jul; 50(6):1565-83. PubMed ID: 6034758 [TBL] [Abstract][Full Text] [Related]
18. Potassium movements in denervated frog sartorius muscle. Venosa RA; Kotsias BA Am J Physiol; 1985 Mar; 248(3):C219-27. PubMed ID: 2579568 [TBL] [Abstract][Full Text] [Related]
19. Adenosine triphosphoric acid as a factor of nervous regulation of Na+/K+/2Cl- cotransport in rat skeletal muscle fibers. Naumenko NV; Uzinskaya KV; Shakirzyanova AV; Urazaev AKh; Zefirov AL Bull Exp Biol Med; 2009 May; 147(5):583-6. PubMed ID: 19907744 [TBL] [Abstract][Full Text] [Related]
20. Transmembrane K + and Cl - activity gradients for the muscle fiber of the giant barnacle. Hinke JA; Gayton DC Can J Physiol Pharmacol; 1971 Apr; 49(4):312-22. PubMed ID: 5124931 [No Abstract] [Full Text] [Related] [Next] [New Search]