These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 7168378)
1. Dependence of gait pattern on the type of coupling between hind- and forelimb generators: modelling study. Zmysłowski W; Kasicki S Acta Neurobiol Exp (Wars); 1982; 42(2):175-82. PubMed ID: 7168378 [TBL] [Abstract][Full Text] [Related]
2. Generation of signals controlling the temporal organization of motoneurons' activity during locomotor movements: modelling study. Zmysłowski W; Kasicki S Acta Neurobiol Exp (Wars); 1982; 42(2):183-93. PubMed ID: 7168379 [TBL] [Abstract][Full Text] [Related]
3. On the interaction between spinal locomotor generators in quadrupeds. Willis JB Brain Res; 1980 Oct; 203(2):171-204. PubMed ID: 7427749 [TBL] [Abstract][Full Text] [Related]
4. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds. Danner SM; Wilshin SD; Shevtsova NA; Rybak IA J Physiol; 2016 Dec; 594(23):6947-6967. PubMed ID: 27633893 [TBL] [Abstract][Full Text] [Related]
5. Tuning of the spinal generators: modelling study. Zmysłowski W; Kasicki S Acta Neurobiol Exp (Wars); 1980; 40(5):895-909. PubMed ID: 7234517 [TBL] [Abstract][Full Text] [Related]
6. Symmetry in locomotor central pattern generators and animal gaits. Golubitsky M; Stewart I; Buono PL; Collins JJ Nature; 1999 Oct; 401(6754):693-5. PubMed ID: 10537106 [TBL] [Abstract][Full Text] [Related]
7. Effects of subject velocity on ground reaction force measurements and stance times in clinically normal horses at the walk and trot. McLaughlin RM; Gaughan EM; Roush JK; Skaggs CL Am J Vet Res; 1996 Jan; 57(1):7-11. PubMed ID: 8720231 [TBL] [Abstract][Full Text] [Related]
8. Kinematic analyses of air-stepping in normal and decerebrate preweanling rats. Stehouwer DJ; Van Hartesveldt C Dev Psychobiol; 2000 Jan; 36(1):1-8. PubMed ID: 10607356 [TBL] [Abstract][Full Text] [Related]
9. [The role of afferentation in the generation of walking movements]. Orlovskiĭ GN; Fel'dman AG Neirofiziologiia; 1972; 4(4):401-9. PubMed ID: 4667585 [No Abstract] [Full Text] [Related]
10. Convergence of forelimb afferent actions on C7-Th1 propriospinal neurones bilaterally projecting to sacral segments of the cat spinal cord. Krutki P; Mrówczyński W Arch Ital Biol; 2004 Feb; 142(1):47-58. PubMed ID: 15143623 [TBL] [Abstract][Full Text] [Related]
11. Characteristics of H- and M-waves recorded from rat forelimbs. Hosoido T; Motoyama S; Goto M; Mori F; Tajima T; Hirata H; Wada N Neurosci Lett; 2009 Feb; 450(3):239-41. PubMed ID: 19056465 [TBL] [Abstract][Full Text] [Related]
12. Modelling study of spinal generators structure; the role of alpha motoneurons, Renshaw cells and Ia interneurons in locomotion. Zmysłowski W; Kasicki S Acta Neurobiol Exp (Wars); 1986; 46(1):57-72. PubMed ID: 3739761 [TBL] [Abstract][Full Text] [Related]
13. Travelling wave patterns in a model of the spinal pattern generator using spiking neurons. Kaske A; Bertschinger N Biol Cybern; 2005 Mar; 92(3):206-18. PubMed ID: 15754193 [TBL] [Abstract][Full Text] [Related]
14. Coordinated network functioning in the spinal cord: an evolutionary perspective. Falgairolle M; de Seze M; Juvin L; Morin D; Cazalets JR J Physiol Paris; 2006; 100(5-6):304-16. PubMed ID: 17658245 [TBL] [Abstract][Full Text] [Related]
15. Multimodal behavior in a four neuron ring circuit: mode switching. Luo C; Clark JW; Canavier CC; Baxter DA; Byrne JH IEEE Trans Biomed Eng; 2004 Feb; 51(2):205-18. PubMed ID: 14765693 [TBL] [Abstract][Full Text] [Related]
16. From swimming to walking with a salamander robot driven by a spinal cord model. Ijspeert AJ; Crespi A; Ryczko D; Cabelguen JM Science; 2007 Mar; 315(5817):1416-20. PubMed ID: 17347441 [TBL] [Abstract][Full Text] [Related]
17. Evidence for distinct spinal locomotion generators supplying respectively fore- and hindlimbs in the rabbit. Viala D; Vidal C Brain Res; 1978 Oct; 155(1):182-6. PubMed ID: 688011 [No Abstract] [Full Text] [Related]
18. Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. Danner SM; Shevtsova NA; Frigon A; Rybak IA Elife; 2017 Nov; 6():. PubMed ID: 29165245 [TBL] [Abstract][Full Text] [Related]
19. A 3D analysis of fore- and hindlimb motion during locomotion: comparison of overground and ladder walking in rats. Garnier C; Falempin M; Canu MH Behav Brain Res; 2008 Jan; 186(1):57-65. PubMed ID: 17764759 [TBL] [Abstract][Full Text] [Related]
20. Spinal control of locomotion before and after spinal cord injury. Danner SM; Shepard CT; Hainline C; Shevtsova NA; Rybak IA; Magnuson DSK Exp Neurol; 2023 Oct; 368():114496. PubMed ID: 37499972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]