These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 7168497)

  • 1. [Detection of NADP(H)-oxidase activity in peritoneal macrophages during erythrophagocytosis].
    Halbhuber KJ; Linss W
    Anat Anz; 1982; 152(5):467-9. PubMed ID: 7168497
    [No Abstract]   [Full Text] [Related]  

  • 2. [Possibilities for the use of cerium for the ultrahistochemical demonstration of enzymes].
    Halbhuber KJ; Linss W
    Acta Histochem Suppl; 1984; 30():313-7. PubMed ID: 6425952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma membrane and phagosome localisation of the activated NADPH oxidase in elicited peritoneal macrophages of the guinea-pig.
    Berton G; Bellavite P; de Nicola G; Dri P; Rossi F
    J Pathol; 1982 Mar; 136(3):241-52. PubMed ID: 7069527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural localization of NADPH-oxidase activity in murine peritoneal macrophages during phagocytosis of Brucella. Correlation with the production of superoxide anions.
    Gay B; Sanchez-Teff S; Caravano R
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1984; 45(2):147-55. PubMed ID: 6143443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enzyme responsible for the respiratory burst in elicited guinea pig peritoneal macrophages.
    Berton G; Bellavite P; Dri P; de Togni P; Rossi F
    J Pathol; 1982 Apr; 136(4):273-90. PubMed ID: 7077433
    [No Abstract]   [Full Text] [Related]  

  • 6. Cytochemical localization of NADH and NADPH oxidases during interaction of Trypanosoma cruzi with activated macrophages.
    de Carvalho TU; de Souza W
    Parasitol Res; 1987; 73(3):213-7. PubMed ID: 3295860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different subcellular localization of cytochrome b and the dormant NADPH-oxidase in neutrophils and macrophages: effect on the production of reactive oxygen species during phagocytosis.
    Johansson A; Jesaitis AJ; Lundqvist H; Magnusson KE; Sjölin C; Karlsson A; Dahlgren C
    Cell Immunol; 1995 Mar; 161(1):61-71. PubMed ID: 7867086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of crystalloid inclusions in macrophages I: studies of peritoneal macrophages after erythrocyte ingestion.
    Ali BA; Shortland JR; Hudson G
    Br J Exp Pathol; 1981 Dec; 62(6):655-61. PubMed ID: 6275876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparative electron-microscopic studies on mouse peritoneal macrophages after intraperitoneal administration of sheep or self erythrocytes].
    Barten M; Schmitt E; Tessmann D; Bienengräber A
    Allerg Immunol (Leipz); 1973; 19(2-4):196-8. PubMed ID: 4281625
    [No Abstract]   [Full Text] [Related]  

  • 10. Enzymatic basis of the respiratory burst of guinea pig resident peritoneal macrophages.
    Bellavite P; Berton G; Dri P; Soranzo MR
    J Reticuloendothel Soc; 1981 Jan; 29(1):47-60. PubMed ID: 6259350
    [No Abstract]   [Full Text] [Related]  

  • 11. [Effect of amphoglucamine on the functional and metabolic characteristics of macrophages].
    Araviĭskiĭ RA; Shatik LI
    Tr Inst Im Pastera; 1982; 58():111-3. PubMed ID: 6764978
    [No Abstract]   [Full Text] [Related]  

  • 12. Morphological studies on activation of peritoneal and alveolar rat macrophages and of phagocytosis by these cells.
    Saint-Guillain ML; Vray B; Hoebeke J; Leloup R
    Scan Electron Microsc; 1981; (Pt 2):179-85. PubMed ID: 7323725
    [No Abstract]   [Full Text] [Related]  

  • 13. Evaluation of oxidative processes in human pigment epithelial cells associated with retinal outer segment phagocytosis.
    Miceli MV; Liles MR; Newsome DA
    Exp Cell Res; 1994 Sep; 214(1):242-9. PubMed ID: 8082727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel biofuel cell harvesting energy from activated human macrophages.
    Sakai M; Vonderheit A; Wei X; Küttel C; Stemmer A
    Biosens Bioelectron; 2009 Sep; 25(1):68-75. PubMed ID: 19576754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The in vitro susceptibility of Fonsecaea pedrosoi to activated macrophages.
    Rozental S; Alviano CS; de Souza W
    Mycopathologia; 1994 May; 126(2):85-91. PubMed ID: 8065435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparative use of 2,7-dichlorofluorescein diacetate, dihydrorhodamine 123, and hydroethidine for studying oxidative metabolism of phagocytosing cells].
    Biziukin AV; Korkina LG; Velichkovskiĭ BT
    Biull Eksp Biol Med; 1995 Apr; 119(4):361-5. PubMed ID: 7620128
    [No Abstract]   [Full Text] [Related]  

  • 17. Mixed-function oxidases and the alveolar macrophage.
    Hook GE; Bend JR; Fouts JR
    Biochem Pharmacol; 1972 Dec; 21(24):3267-77. PubMed ID: 4405368
    [No Abstract]   [Full Text] [Related]  

  • 18. The effects of chlorothalonil on oyster hemocyte activation: phagocytosis, reduced pyridine nucleotides, and reactive oxygen species production.
    Baier-Anderson C; Anderson RS
    Environ Res; 2000 May; 83(1):72-8. PubMed ID: 10845784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic basis of metabolic stimulation in leucocytes during phagocytosis: the role of activated NADPH oxidase.
    Patriarca P; Cramer R; Moncalvo S; Rossi F; Romeo D
    Arch Biochem Biophys; 1971 Jul; 145(1):255-62. PubMed ID: 4399354
    [No Abstract]   [Full Text] [Related]  

  • 20. Activation of dialysis of NAD(P)H oxidase(s) from human neutrophils.
    DeChatelet LR; McCall CE; Shirley PS
    J Reticuloendothel Soc; 1980 Dec; 28(6):533-45. PubMed ID: 7463413
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.