These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7170997)

  • 1. Store and recoil of elastic energy in slow and fast types of human skeletal muscles.
    Bosco C; Tihanyi J; Komi PV; Fekete G; Apor P
    Acta Physiol Scand; 1982 Dec; 116(4):343-9. PubMed ID: 7170997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of fatigue on store and re-use of elastic energy in slow and fast types of human skeletal muscle.
    Bosco C; Tihanyi J; Latteri F; Fekete G; Apor P; Rusko H
    Acta Physiol Scand; 1986 Sep; 128(1):109-17. PubMed ID: 3766167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of prolonged skeletal muscle stretch-shortening cycle on recoil of elastic energy and on energy expenditure.
    Bosco C; Rusko H
    Acta Physiol Scand; 1983 Nov; 119(3):219-24. PubMed ID: 6659989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of elastic energy and myoelectrical potentiation of triceps surae during stretch-shortening cycle exercise.
    Bosco C; Tarkka I; Komi PV
    Int J Sports Med; 1982 Aug; 3(3):137-40. PubMed ID: 7129720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prestretch potentiation of human skeletal muscle during ballistic movement.
    Bosco C; Komi PV; Ito A
    Acta Physiol Scand; 1981 Feb; 111(2):135-40. PubMed ID: 7282389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Storage and recovery of elastic potential energy powers ballistic prey capture in toads.
    Lappin AK; Monroy JA; Pilarski JQ; Zepnewski ED; Pierotti DJ; Nishikawa KC
    J Exp Biol; 2006 Jul; 209(Pt 13):2535-53. PubMed ID: 16788037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of stored elastic energy in leg extensor muscles by men and women.
    Komi PV; Bosco C
    Med Sci Sports; 1978; 10(4):261-5. PubMed ID: 750844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of pre-stretch on mechanical efficiency of human skeletal muscle.
    Bosco C; Montanari G; Tarkka I; Latteri F; Cozzi M; Iachelli G; Faina M; Colli R; Dal Monte A; La Rosa M
    Acta Physiol Scand; 1987 Nov; 131(3):323-9. PubMed ID: 3425343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromyographic and force production characteristics of leg extensor muscles of elite weight lifters during isometric, concentric, and various stretch-shortening cycle exercises.
    Häkkinen K; Komi PV; Kauhanen H
    Int J Sports Med; 1986 Jun; 7(3):144-51. PubMed ID: 2942500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of prestretch intensity on mechanical efficiency of positive work and on elastic behavior of skeletal muscle in stretch-shortening cycle exercise.
    Aura O; Komi PV
    Int J Sports Med; 1986 Jun; 7(3):137-43. PubMed ID: 3733310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechano-elastic properties of human muscles at different temperatures.
    Asmussen E; Bonde-Petersen F; Jorgensen K
    Acta Physiol Scand; 1976 Jan; 96(1):83-93. PubMed ID: 1251749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromuscular function and mechanical efficiency of human leg extensor muscles during jumping exercises.
    Bosco C; Ito A; Komi PV; Luhtanen P; Rahkila P; Rusko H; Viitasalo JT
    Acta Physiol Scand; 1982 Apr; 114(4):543-50. PubMed ID: 7136782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of exhaustive, isometric training on lactate accumulation in different muscle fiber types.
    Tesch PA; Karlsson J
    Int J Sports Med; 1984 Apr; 5(2):89-91. PubMed ID: 6715103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactate in fast and slow twitch skeletal muscle fibres of man during isometric contraction.
    Tesch P; Karlsson J
    Acta Physiol Scand; 1977 Feb; 99(2):230-6. PubMed ID: 842377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-energy phosphate compounds during exercise in human slow-twitch and fast-twitch muscle fibres.
    Rehunen S; Näveri H; Kuoppasalmi K; Härkönen M
    Scand J Clin Lab Invest; 1982 Oct; 42(6):499-506. PubMed ID: 7156863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetic aspects of skeletal muscle contraction: implications of fiber types.
    Rall JA
    Exerc Sport Sci Rev; 1985; 13():33-74. PubMed ID: 3159582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apparent efficiency and storage of elastic energy in human muscles during exercise.
    Asmussen E; Bonde-Petersen F
    Acta Physiol Scand; 1974 Dec; 92(4):537-45. PubMed ID: 4455009
    [No Abstract]   [Full Text] [Related]  

  • 19. Muscle fiber type effects on energetically optimal cadences in cycling.
    Umberger BR; Gerritsen KG; Martin PE
    J Biomech; 2006; 39(8):1472-9. PubMed ID: 15923008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.
    Trinh HH; Lamb GD
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):591-600. PubMed ID: 16789925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.