These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7170999)

  • 1. A mathematical description of the myogenic response in the microcirculation.
    Borgström P; Grände PO; Mellander S
    Acta Physiol Scand; 1982 Dec; 116(4):363-76. PubMed ID: 7170999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myogenic microvascular responses to change of transmural pressure. A mathematical approach.
    Borgström P; Grände PO
    Acta Physiol Scand; 1979 Aug; 106(4):411-23. PubMed ID: 495150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a rate-sensitive regulatory mechanism in myogenic microvascular control.
    Grände PO; Lundvall J; Mellander S
    Acta Physiol Scand; 1977 Apr; 99(4):432-47. PubMed ID: 857611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The myogenic response in the microcirculation and its interaction with other control systems.
    Johnson PC
    J Hypertens Suppl; 1989 Sep; 7(4):S33-9; discussion S40. PubMed ID: 2681595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myogenic mechanisms in the skeletal muscle circulation.
    Grände PO
    J Hypertens Suppl; 1989 Sep; 7(4):S47-53. PubMed ID: 2809807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the nature of basal vascular tone in cat skeletal muscle and its dependence on transmural pressure stimuli.
    Grände PO; Borgström P; Mellander S
    Acta Physiol Scand; 1979 Dec; 107(4):365-76. PubMed ID: 44427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of static and dynamic regulatory mechanisms in myogenic microvascular control.
    Grände PO; Mellander S
    Acta Physiol Scand; 1978 Feb; 102(2):231-45. PubMed ID: 626101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of single arterioles in vivo in cat skeletal muscle to change in arterial pressure applied at different rates.
    Borgström P; Grände PO; Lindbom L
    Acta Physiol Scand; 1981 Oct; 113(2):207-12. PubMed ID: 7315451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical analysis of complex oscillations in multibranched microvascular networks.
    Ursino M; Cavalcanti S; Bertuglia S; Colantuoni A
    Microvasc Res; 1996 Mar; 51(2):229-49. PubMed ID: 8778577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic and static components in the myogenic control of vascular tone in cat skeletal muscle.
    Grände PO
    Acta Physiol Scand Suppl; 1979; 476():1-44. PubMed ID: 232614
    [No Abstract]   [Full Text] [Related]  

  • 11. Site of autoregulatory reactions in the vascular bed of cat skeletal muscle as determined with a new technique for segmental vascular resistance recordings.
    Björnberg J; Grände PO; Maspers M; Mellander S
    Acta Physiol Scand; 1988 Jun; 133(2):199-210. PubMed ID: 3227915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation of the metabolic interaction with myogenic vascular reactivity during blood flow autoregulation.
    Borgström P; Grände PO; Mellander S
    Acta Physiol Scand; 1984 Nov; 122(3):275-84. PubMed ID: 6151338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical model for the myogenic response in the microcirculation: Part I--Formulation and initial testing.
    Lee S; Schmid-Schönbein GW
    J Biomech Eng; 1996 May; 118(2):145-51. PubMed ID: 8738777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic control of large-bore arterial resistance vessels, arterioles, and veins in cat skeletal muscle during exercise.
    Björnberg J; Maspers M; Mellander S
    Acta Physiol Scand; 1989 Feb; 135(2):83-94. PubMed ID: 2923003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical analysis of vasomotion in the peripheral vascular bed.
    Ursino M; Fabbri G; Belardinelli E
    Cardioscience; 1992 Mar; 3(1):13-25. PubMed ID: 1554867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance responses in proximal arterial vessels, arterioles and veins during reactive hyperaemia in skeletal muscle and their underlying regulatory mechanisms.
    Björnberg J; Albert U; Mellander S
    Acta Physiol Scand; 1990 Aug; 139(4):535-50. PubMed ID: 2248033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular signalling in arteriolar myogenic constriction: involvement of tyrosine phosphorylation pathways.
    Murphy TV; Spurrell BE; Hill MA
    Clin Exp Pharmacol Physiol; 2002 Jul; 29(7):612-9. PubMed ID: 12060106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated myogenic and metabolic control of vascular tone in skeletal muscle during autoregulation of blood flow.
    Borgström P; Gestrelius S
    Microvasc Res; 1987 May; 33(3):353-76. PubMed ID: 3613984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myogenic vascular regulation in skeletal muscle in vivo is not dependent of endothelium-derived nitric oxide.
    Ekelund U; Björnberg J; Grände PO; Albert U; Mellander S
    Acta Physiol Scand; 1992 Feb; 144(2):199-207. PubMed ID: 1575052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.