These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 7171590)

  • 1. Mechanisms of p-aminohippurate transport by brush-border and basolateral membrane vesicles isolated from rat kidney cortex.
    Hori R; Takano M; Okano T; Kitazawa S; Inui K
    Biochim Biophys Acta; 1982 Oct; 692(1):97-100. PubMed ID: 7171590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of urate and p-aminohippurate transport in rat renal microvillus membrane vesicles.
    Kahn AM; Branham S; Weinman EJ
    Am J Physiol; 1983 Aug; 245(2):F151-8. PubMed ID: 6309010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Urate and p-aminohippurate transport in rat renal basolateral vesicles.
    Kahn AM; Shelat H; Weinman EJ
    Am J Physiol; 1985 Nov; 249(5 Pt 2):F654-61. PubMed ID: 4061653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p-Aminohippuric acid transport into brush border vesicles isolated from flounder kidney.
    Eveloff J; Kinne R; Kinter WB
    Am J Physiol; 1979 Oct; 237(4):F291-8. PubMed ID: 495721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p-Aminohippurate transport in rat renal brush-border membranes: a potential-sensitive transport system and an anion exchanger.
    Ohoka K; Takano M; Okano T; Maeda S; Inui K; Hori R
    Biol Pharm Bull; 1993 Apr; 16(4):395-401. PubMed ID: 8358390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na+ and H+ gradient-dependent transport of p-aminohippurate in membrane vesicles from dog kidney cortex.
    Russel FG; van der Linden PE; Vermeulen WG; Heijn M; van Os CH; van Ginneken CA
    Biochem Pharmacol; 1988 Jul; 37(13):2639-49. PubMed ID: 3390224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p-Aminohippurate/2-oxoglutarate exchange in bovine renal brush-border and basolateral membrane vesicles.
    Schmitt C; Burckhardt G
    Pflugers Arch; 1993 May; 423(3-4):280-90. PubMed ID: 8321632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of DIDS on renal tubular transport.
    Koschier FJ; Stokols MF; Goldinger JM; Acara M; Hong SK
    Am J Physiol; 1980 Feb; 238(2):F99-106. PubMed ID: 7361895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affinity identification of organic anion transporters in brush-border membrane vesicles from rat kidney.
    Orlov YuN ; Zherebtsova MA; Kazbekov EN
    Biochim Biophys Acta; 1994 Jun; 1192(1):117-24. PubMed ID: 8204641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mediated transport of long-chain fatty acids by rat renal basolateral membranes.
    Trimble ME
    Am J Physiol; 1989 Oct; 257(4 Pt 2):F539-46. PubMed ID: 2801958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carrier-mediated transport systems of tetraethylammonium in rat renal brush-border and basolateral membrane vesicles.
    Takano M; Inui K; Okano T; Saito H; Hori R
    Biochim Biophys Acta; 1984 Jun; 773(1):113-24. PubMed ID: 6733090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of barium ion on p-aminohippurate transport in basolateral membrane vesicles isolated from rat kidney cortex.
    Hori M; Gemba M
    Arch Int Pharmacodyn Ther; 1985 Jun; 275(2):287-99. PubMed ID: 2992405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of divalent cations and sulfhydryl reagents on the p-aminohippurate (PAH) transporter of renal basal-lateral membranes.
    Tse SS; Bildstein CL; Liu D; Mamelok RD
    J Pharmacol Exp Ther; 1983 Jul; 226(1):19-26. PubMed ID: 6864539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of chloride on carrier-mediated transport of p-aminohippurate in rat renal basolateral membrane vesicles.
    Inui K; Takano M; Okano T; Hori R
    Biochim Biophys Acta; 1986 Mar; 855(3):425-8. PubMed ID: 3947632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of rat renal luminal and contraluminal sulfate transport systems to DIDS.
    Bästlein C; Burckhardt G
    Am J Physiol; 1986 Feb; 250(2 Pt 2):F226-34. PubMed ID: 3946600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the pH dependence of folate binding and transport by rat kidney brush border membrane vesicles.
    Bhandari SD; Fortney T; McMartin KE
    Proc Soc Exp Biol Med; 1991 Apr; 196(4):451-6. PubMed ID: 2008442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multispecific anion exchange in basolateral (sinusoidal) rat liver plasma membrane vesicles.
    Hugentobler G; Meier PJ
    Am J Physiol; 1986 Nov; 251(5 Pt 1):G656-64. PubMed ID: 3777171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic studies of sulfate transport in basolateral membrane vesicles from rat renal cortex.
    Shimada H; Burckhardt G
    Pflugers Arch; 1986; 407 Suppl 2():S160-7. PubMed ID: 3822762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition by cyclic GMP of p-aminohippurate uptake by basolateral membrane vesicles isolated from rat kidney cortex.
    Hori M; Gemba M
    J Pharmacobiodyn; 1986 May; 9(5):510-2. PubMed ID: 3020224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of S-(2-chloroethyl)-DL-cysteine on the transport of p-aminohippurate ion in renal plasma membrane vesicles.
    Guo WX; Chakrabarti S; Malick MA; Côté MG
    Arch Biochem Biophys; 1990 Nov; 283(1):206-9. PubMed ID: 1978635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.