BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 7171593)

  • 1. The energetics of D-fucose transport in Saccharomyces fragilis. The influence of the protonmotive force on sugar accumulation.
    Van den Broek PJ; Christianse K; Van Steveninck J
    Biochim Biophys Acta; 1982 Nov; 692(2):231-7. PubMed ID: 7171593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of H+/methyl beta-D-thiogalactoside symport in Saccharomyces fragilis.
    Van den Broek PJ; Van Steveninck J
    Biochim Biophys Acta; 1982 Dec; 693(1):213-20. PubMed ID: 7150589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protonmotive force in freshwater sulfate-reducing bacteria, and its role in sulfate accumulation in Desulfobulbus propionicus.
    Kreke B; Cypionka H
    Arch Microbiol; 1992; 158(3):183-7. PubMed ID: 1332637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible energization of K+ accumulation into metabolizing yeast by the protonmotive force. Binding correction to be applied in the calculation of the yeast membrane potential from tetraphenylphosphonium distribution.
    Boxman AW; Dobbelmann J; Borst-Pauwels GW
    Biochim Biophys Acta; 1984 Apr; 772(1):51-7. PubMed ID: 6370307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of 2-deoxy-D-galactose in Saccharomyces fragilis.
    Jaspers HT; Van Steveninck J
    Biochim Biophys Acta; 1976 Aug; 443(2):243-53. PubMed ID: 953017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane potentials in yeast cells measured by direct and indirect methods.
    Vacata V; Kotyk A; Sigler K
    Biochim Biophys Acta; 1981 Apr; 643(1):265-8. PubMed ID: 7016192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of membrane potential in polymorphonuclear leukocytes and its changes during surface stimulation.
    Kuroki M; Kamo N; Kobatake Y; Okimasu E; Utsumi K
    Biochim Biophys Acta; 1982 Dec; 693(2):326-34. PubMed ID: 7159582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of 2-deoxy-D-glucose uptake in Saccharomyces fragilis.
    Van den Broek PJ; Van Steveninck J
    Biochim Biophys Acta; 1981 Dec; 649(2):305-9. PubMed ID: 7317400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active transport of L-sorbose and 2-deoxy-D-galactose in Saccharomyces fragilis.
    Jaspers HT; van Steveninck J
    Biochim Biophys Acta; 1977 Sep; 469(3):292-300. PubMed ID: 20143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of pH on the cell membrane potential of primary cultured rat hepatocytes as measured with tetraphenylphosphonium and dimethyloxazolidine-2,4-dione.
    Ehrhardt V
    Biochim Biophys Acta; 1984 Aug; 775(2):182-8. PubMed ID: 6466666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the H+/sugar symport in yeast under conditions of depolarized plasma membrane.
    Severin J; Langel P; Höfer M
    J Bioenerg Biomembr; 1989 Jun; 21(3):321-34. PubMed ID: 2545668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of simultaneously occurring proton-sorbose symport and passive sorbose transport in Saccharomyces fragilis.
    van den Broek PJ; van Steveninck J
    Biochim Biophys Acta; 1980 Nov; 602(2):419-32. PubMed ID: 6252966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetraphenylphosphonium ion is a true indicator of negative plasma-membrane potential in the yeast Rhodotorula glutinis. Experiments under osmotic stress and at low external pH values.
    Höfer M; Künemund A
    Biochem J; 1985 Feb; 225(3):815-9. PubMed ID: 4038875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Energy-dependent transport of tetraphenylphosphonium ions in Staphylococcus aureus].
    Syrtsov VV; Vinnikov AI
    Ukr Biokhim Zh (1978); 1988; 60(3):98-101. PubMed ID: 3413850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The membrane potential has no detectable effect on the phosphocholine headgroup conformation in large unilamellar phosphatidylcholine vesicles as determined by 2H-NMR.
    Leenhouts JM; Chupin V; de Gier J; de Kruijff B
    Biochim Biophys Acta; 1993 Dec; 1153(2):257-61. PubMed ID: 8274495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton-linked L-rhamnose transport, and its comparison with L-fucose transport in Enterobacteriaceae.
    Muiry JA; Gunn TC; McDonald TP; Bradley SA; Tate CG; Henderson PJ
    Biochem J; 1993 Mar; 290 ( Pt 3)(Pt 3):833-42. PubMed ID: 8384447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some characteristics of tetraphenylphosphonium uptake into Saccharomyces cerevisiae.
    Boxman AW; Barts PW; Borst-Pauwels GW
    Biochim Biophys Acta; 1982 Mar; 686(1):13-8. PubMed ID: 7039677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of membrane potential by external H+ concentration in Bacillus subtilis as determined by an ion-selective electrode.
    Hosoi S; Mochizuki N; Hayashi S; Kasai M
    Biochim Biophys Acta; 1980 Aug; 600(3):844-52. PubMed ID: 6773573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative methods for measurement of membrane potentials in epithelia.
    Leader JP; Macknight AD
    Fed Proc; 1982 Jan; 41(1):54-9. PubMed ID: 7056399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.