BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7171631)

  • 1. A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart.
    Matthews PM; Bland JL; Gadian DG; Radda GK
    Biochim Biophys Acta; 1982 Nov; 721(3):312-20. PubMed ID: 7171631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP; Headrick JP
    Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies.
    Kupriyanov VV; Ya Steinschneider A; Ruuge EK; Kapel'ko VI; Yu Zueva M; Lakomkin VL; Smirnov VN; Saks VA
    Biochim Biophys Acta; 1984 Dec; 805(4):319-31. PubMed ID: 6509089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study.
    Degani H; Laughlin M; Campbell S; Shulman RG
    Biochemistry; 1985 Sep; 24(20):5510-6. PubMed ID: 4074712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of an individual rate constant in the presence of multiple exchanges: application to myocardial creatine kinase reaction.
    Uğurbil K; Petein M; Maidan R; Michurski S; From AH
    Biochemistry; 1986 Jan; 25(1):100-7. PubMed ID: 3954984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH and temperature effects on kinetics of creatine kinase in aqueous solution and in isovolumic perfused heart. A 31P nuclear magnetization transfer study.
    Goudemant JF; vander Elst L; Dupont B; Van Haverbeke Y; Muller RN
    NMR Biomed; 1994 May; 7(3):101-10. PubMed ID: 8080711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of exchange in the reaction catalysed by creatine kinase using 14C and 15N isotope labels and the NMR technique of saturation transfer.
    Brindle KM; Radda GK
    Biochim Biophys Acta; 1985 Jun; 829(2):188-201. PubMed ID: 3995051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue beta-guanidinopropionic acid.
    Shoubridge EA; Jeffry FM; Keogh JM; Radda GK; Seymour AM
    Biochim Biophys Acta; 1985 Oct; 847(1):25-32. PubMed ID: 4052460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The temperature dependence of creatine kinase fluxes in the rat heart.
    Matthews PM; Bland JL; Radda GK
    Biochim Biophys Acta; 1983 Sep; 763(2):140-6. PubMed ID: 6604548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study.
    Bittl JA; Ingwall JS
    J Biol Chem; 1985 Mar; 260(6):3512-7. PubMed ID: 3972835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart.
    Stepanov V; Mateo P; Gillet B; Beloeil JC; Lechene P; Hoerter JA
    Am J Physiol; 1997 Oct; 273(4):C1397-408. PubMed ID: 9357786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A phosphorus-31 nuclear magnetic resonance study of effects of altered thyroid state on cardiac bioenergetics.
    Keogh JM; Matthews PM; Seymour AM; Radda GK
    Adv Myocardiol; 1985; 6():299-309. PubMed ID: 2986261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of creatine kinase during steady-state isometric twitch contraction in rat skeletal muscle.
    Shoubridge EA; Bland JL; Radda GK
    Biochim Biophys Acta; 1984 Sep; 805(1):72-8. PubMed ID: 6477973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase in catecholamine-stimulated guinea-pig cardiac muscle. Comparison with mass-action ratio of creatine kinase.
    Bünger R; Mukohara N; Kang YH; Mallet RT
    Eur J Biochem; 1991 Dec; 202(3):913-21. PubMed ID: 1765102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance.
    Gadian DG; Radda GK; Brown TR; Chance EM; Dawson MJ; Wilkie DR
    Biochem J; 1981 Jan; 194(1):215-28. PubMed ID: 6975619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 31P NMR saturation transfer measurements of phosphorus exchange reactions in rat heart and kidney in situ.
    Koretsky AP; Wang S; Klein MP; James TL; Weiner MW
    Biochemistry; 1986 Jan; 25(1):77-84. PubMed ID: 3954995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of mitochondrial creatine kinase fluxes in intact heart mitochondria using 31P-saturation transfer nuclear magnetic resonance spectroscopy.
    Jahnke D; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1998 Jul; 1365(3):503-12. PubMed ID: 9711302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The energetics of myocardial stretch. Creatine kinase flux and oxygen consumption in the noncontracting rat heart.
    Bittl JA; Ingwall JS
    Circ Res; 1986 Mar; 58(3):378-83. PubMed ID: 3013457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac contractile function, oxygen consumption rate and cytosolic phosphates during inhibition of electron flux by amytal--a 31P-NMR study.
    Kupriyanov VV; Lakomkin VL; Korchazhkina OV; Stepanov VA; Steinschneider AYa ; Kapelko VI
    Biochim Biophys Acta; 1991 Jul; 1058(3):386-99. PubMed ID: 2065062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.