BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 7171631)

  • 21. Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer.
    Zahler R; Bittl JA; Ingwall JS
    Biophys J; 1987 Jun; 51(6):883-93. PubMed ID: 3607210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of norepinephrine infusion on myocardial high-energy phosphate content and turnover in the living rat.
    Bittl JA; Balschi JA; Ingwall JS
    J Clin Invest; 1987 Jun; 79(6):1852-9. PubMed ID: 3584473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ATP synthesis and degradation rates in the perfused rat heart. 31P-nuclear magnetic resonance double saturation transfer measurements.
    Spencer RG; Balschi JA; Leigh JS; Ingwall JS
    Biophys J; 1988 Nov; 54(5):921-9. PubMed ID: 3242635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic analysis of the cerebral creatine kinase reaction under hypoxic and hypoglycaemic conditions in vitro. A 31P-n.m.r. study.
    Cox DW; Morris PG; Bachelard HS
    Biochem J; 1988 Oct; 255(2):523-7. PubMed ID: 3202830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Free creatine available to the creatine phosphate energy shuttle in isolated rat atria.
    Savabi F
    Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7476-80. PubMed ID: 3174649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of mitochondrial respiration in muscle.
    McMillin JB; Pauly DF
    Mol Cell Biochem; 1988 Jun; 81(2):121-9. PubMed ID: 3050450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of the creatine kinase reaction to determine free energy change of ATP hydrolysis in anoxic cardiomyocytes.
    Siegmund B; Koop A; Piper HM
    Pflugers Arch; 1989 Feb; 413(4):435-7. PubMed ID: 2928097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 31P magnetization transfer in the phosphoglyceromutase-enolase coupled enzyme system.
    Chapman BE; Stewart IM; Bulliman BT; Mendz GL; Kuchel PW
    Eur Biophys J; 1988; 16(3):187-91. PubMed ID: 2847912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis.
    Wallimann T; Wyss M; Brdiczka D; Nicolay K; Eppenberger HM
    Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):21-40. PubMed ID: 1731757
    [No Abstract]   [Full Text] [Related]  

  • 30. Complementarity of magnetic resonance spectroscopy, positron emission tomography and single photon emission tomography for the in vivo investigation of human cardiac metabolism and neurotransmission.
    Syrota A; Jehenson P
    Eur J Nucl Med; 1991; 18(11):897-923. PubMed ID: 1661237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CK flux or direct ATP transfer: versatility of energy transfer pathways evidenced by NMR in the perfused heart.
    Joubert F; Mateo P; Gillet B; Beloeil JC; Mazet JL; Hoerter JA
    Mol Cell Biochem; 2004; 256-257(1-2):43-58. PubMed ID: 14977169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Nuclear magnetic resonance (NMR) spectroscopy and its application to biomedical research].
    Nakazawa M; Imai S
    Nihon Yakurigaku Zasshi; 1988 Jul; 92(1):1-9. PubMed ID: 3065161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart.
    Matthews PM; Bland JL; Gadian DG; Radda GK
    Biochim Biophys Acta; 1982 Nov; 721(3):312-20. PubMed ID: 7171631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP; Headrick JP
    Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies.
    Kupriyanov VV; Ya Steinschneider A; Ruuge EK; Kapel'ko VI; Yu Zueva M; Lakomkin VL; Smirnov VN; Saks VA
    Biochim Biophys Acta; 1984 Dec; 805(4):319-31. PubMed ID: 6509089
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.