These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7172015)

  • 21. Cortically projecting cells in the periaqueductal gray matter of the rat. A retrograde fluorescent tracer study.
    Herrero MT; Insausti R; Gonzalo LM
    Brain Res; 1991 Mar; 543(2):201-12. PubMed ID: 2059832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of periaqueductal gray and dorsal raphe nucleus neurons projecting to both the trigeminal sensory complex and forebrain structures: a fluorescent retrograde double-labeling study in the rat.
    Li YQ; Takada M; Matsuzaki S; Shinonaga Y; Mizuno N
    Brain Res; 1993 Oct; 623(2):267-77. PubMed ID: 8221108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescent double-label study of lateral reticular nucleus projections to the spinal cord and periaqueductal gray in the rat.
    Lee HS; Mihailoff GA
    Anat Rec; 1999 Sep; 256(1):91-8. PubMed ID: 10456990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Afferent connections of area 20 in the cat studied by means of the retrograde axonal transport of horseradish peroxidase.
    Cavada C; Reinoso-Suárez F
    Brain Res; 1983 Jul; 270(2):319-24. PubMed ID: 6883099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cells of origin of cat trigeminothalamic projections: especially in the caudal medulla.
    Shigenaga Y; Nakatani Z; Nishimori T; Suemune S; Kuroda R; Matano S
    Brain Res; 1983 Oct; 277(2):201-22. PubMed ID: 6640296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Periaqueductal grey projection to the ventrobasal complex in the cat: an horseradish peroxidase study.
    Barbaresi P; Conti F; Manzoni T
    Neurosci Lett; 1982 Jun; 30(3):205-9. PubMed ID: 6180360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Axonal branches of the same cerebellar neurons terminate bilaterally in the thalamus.
    Bentivoglio M; Molinari M
    Neurosci Lett; 1981 May; 23(3):291-6. PubMed ID: 6167915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Medial, intralaminar, and lateral terminations of lumbar spinothalamic tract neurons: a fluorescent double-label study.
    Stevens RT; Hodge CJ; Apkarian AV
    Somatosens Mot Res; 1989; 6(3):285-308. PubMed ID: 2728780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organization of efferent projections of the subthalamic nucleus in the squirrel monkey as revealed by retrograde labeling methods.
    Parent A; Smith Y
    Brain Res; 1987 Dec; 436(2):296-310. PubMed ID: 3435830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thalamic collaterals of corticostriatal axons: their termination field and synaptic targets in cats.
    Paré D; Smith Y
    J Comp Neurol; 1996 Sep; 372(4):551-67. PubMed ID: 8876453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cortical and brain stem afferents to the ventral thalamic nuclei of the cat demonstrated by retrograde axonal transport of horseradish peroxidase.
    Nakano K; Kohno M; Hasegawa Y; Tokushige A
    J Comp Neurol; 1985 Jan; 231(1):102-20. PubMed ID: 3968225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The organization of thalamic neurons projecting to the premotor cortex and the caudate nucleus in the cat studied by a fluorescent retrograde double labeling technique.
    Yanagihara M; Niimi K
    Acta Med Okayama; 1985 Aug; 39(4):329-38. PubMed ID: 4050537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Double retrograde neuronal labeling through divergent axon collaterals, using two fluorescent tracers with the same excitation wavelength which label different features of the cell.
    Kuypers HG; Bentivoglio M; Catsman-Berrevoets CE; Bharos AT
    Exp Brain Res; 1980; 40(4):383-92. PubMed ID: 6160043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Axonal projections to the ventrolateral nucleus of the solitary tract revealed by double labelling of retrograde fluorescent markers in the cat.
    Portillo F; Pásaro R
    Neurosci Lett; 1987 May; 76(3):280-4. PubMed ID: 3587760
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat.
    Van Bockstaele EJ; Aston-Jones G; Pieribone VA; Ennis M; Shipley MT
    J Comp Neurol; 1991 Jul; 309(3):305-27. PubMed ID: 1717516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maturation of thalamic inputs into the associative cortical areas during postnatal ontogenesis in cats.
    Tolchenova GA; Shikhgasanova IS; Batuev AS
    J Neurosci Res; 1981; 6(6):709-17. PubMed ID: 7334531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Axon collaterals of pontine taste area neurons project to the posterior ventromedial thalamic nucleus and to the gustatory neocortex.
    Lasiter PS; Glanzman DL
    Brain Res; 1983 Jan; 258(2):299-304. PubMed ID: 6186336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous visualization of Nuclear yellow and iron-dextran complex for demonstration of branched neurons by retrograde axonal transport.
    Pollin B; Laplante S; Cesaro P; Nguyen-Legros J
    J Neurosci Methods; 1983 Jul; 8(3):205-9. PubMed ID: 6194381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method.
    Parent A; De Bellefeuille L
    Brain Res; 1983 Nov; 278(1-2):11-27. PubMed ID: 6315152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys.
    Parent A; Paré D; Smith Y; Steriade M
    J Comp Neurol; 1988 Nov; 277(2):281-301. PubMed ID: 2466060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.