These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 7172016)

  • 1. Identification and distribution of neurons presumed to give rise to cerebellar climbing fibers in turtle. A retrograde axonal flow study using radioactive D-aspartate as a marker.
    Künzle H; Wiklund L
    Brain Res; 1982 Dec; 252(1):146-50. PubMed ID: 7172016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brainstem reticular nuclei that project to the cerebellum in rats: a retrograde tracer study.
    Newman DB; Ginsberg CY
    Brain Behav Evol; 1992; 39(1):24-68. PubMed ID: 1524594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective retrograde labelling of the rat olivocerebellar climbing fiber system with D-[3H]aspartate.
    Wiklund L; Toggenburger G; Cuénod M
    Neuroscience; 1984 Oct; 13(2):441-68. PubMed ID: 6514187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supraspinal cell populations projecting to the cerebellar cortex in the turtle (Pseudemys scripta elegans).
    Künzle H
    Exp Brain Res; 1983; 49(1):1-12. PubMed ID: 6861928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase.
    Langer T; Fuchs AF; Scudder CA; Chubb MC
    J Comp Neurol; 1985 May; 235(1):1-25. PubMed ID: 3989000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical identification and morphological characterization of the inferior olive in the frog.
    Straka H; Dieringer N
    Neurosci Lett; 1992 Jun; 140(1):67-70. PubMed ID: 1383892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution and structural characterization of neurons giving rise to descending spinal projections in the turtle, Pseudemys scripta elegans.
    Woodson W; Künzle H
    J Comp Neurol; 1982 Dec; 212(4):336-48. PubMed ID: 7161413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zonal organization of climbing fiber projections to the nodulus in the cat.
    Akaogi K; Sato Y; Ikarashi K; Kawasaki T
    Brain Res; 1994 Feb; 638(1-2):1-11. PubMed ID: 7515316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebellar afferents in teleost catfish (Ictaluridae).
    Finger TE
    J Comp Neurol; 1978 Sep; 181(1):173-81. PubMed ID: 79576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Afferent projections from the brainstem to the three floccular zones in cats. I. Climbing fiber projections.
    Sato Y; Kawasaki T; Ikarashi K
    Brain Res; 1983 Aug; 272(1):27-36. PubMed ID: 6616197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical demonstration of branching olivocerebellar fibres by means of a double retrograde labelling technique.
    Brodal A; Walberg F; Berkley KJ; Pelt A
    Neuroscience; 1980; 5(12):2193-202. PubMed ID: 7465051
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies of the principal sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive, and cerebellum.
    Huerta MF; Frankfurter A; Harting JK
    J Comp Neurol; 1983 Oct; 220(2):147-67. PubMed ID: 6643723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axonal branching in the projections from precerebellar nuclei to the lobulus simplex of the rat's cerebellum investigated by retrograde fluorescent double labeling.
    Payne JN
    J Comp Neurol; 1983 Jan; 213(2):233-40. PubMed ID: 6841671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebellar afferents from the vestibular and perihypoglossal nuclei in sheep studied with retrograde transport of horseradish peroxidase.
    Saigal RP; Karamanlidis AN; Voogd J; Michaloudi H; Mangana O
    J Hirnforsch; 1982; 23(1):13-22. PubMed ID: 7096989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinocerebellar projections in the turtle. Observations on their origin and terminal organization.
    Künzle H
    Exp Brain Res; 1983; 53(1):129-41. PubMed ID: 6201378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey.
    Noda H; Sugita S; Ikeda Y
    J Comp Neurol; 1990 Dec; 302(2):330-48. PubMed ID: 1705268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dorsal root projections to the cerebellum in turtle.
    Künzle H
    Exp Brain Res; 1982; 45(3):464-6. PubMed ID: 7067780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The central cervical nucleus in the cat. III. The cerebellar connections studied with anterograde transport of 3H-leucine.
    Wiksten B
    Exp Brain Res; 1979 Jun; 36(1):175-89. PubMed ID: 89039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Afferent connections of the cerebellum in various types of reptiles.
    Bangma GC; ten Donkelaar H
    J Comp Neurol; 1982 May; 207(3):255-73. PubMed ID: 7107986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebellar afferent fibres from the dorsal motor vagal nucleus in the cat.
    Zheng ZH; Dietrichs E; Walberg F
    Neurosci Lett; 1982 Oct; 32(2):113-8. PubMed ID: 7145232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.