These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 7172027)

  • 1. Catecholamine neurons in the brain stem of tree shrew (Tupaia).
    Murray HM; Dominguez WF; Martinez JE
    Brain Res Bull; 1982; 9(1-6):205-15. PubMed ID: 7172027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The monoamine-containing neurons in avian brain: I. A study of the brain stem of the chicken (Gallus domesticus) by means of fluorescence and acetylcholinesterase histochemistry.
    Dubé L; Parent A
    J Comp Neurol; 1981 Mar; 196(4):695-708. PubMed ID: 6110679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Afferent connections to the amygdaloid complex of the rat with some observations in the cat. III. Afferents from the lower brain stem.
    Ottersen OP
    J Comp Neurol; 1981 Nov; 202(3):335-56. PubMed ID: 7298902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The brainstem origin of monoaminergic projections to the spinal cord of the North American opossum: a study using fluorescent tracers and fluorescence histochemistry.
    Martin GF; Cabana T; Humbertson AO
    Brain Res Bull; 1982; 9(1-6):217-25. PubMed ID: 6129037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histaminergic system in the tree shrew brain.
    Airaksinen MS; Flügge G; Fuchs E; Panula P
    J Comp Neurol; 1989 Aug; 286(3):289-310. PubMed ID: 2768560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat.
    Holstege G; Meiners L; Tan K
    Exp Brain Res; 1985; 58(2):379-91. PubMed ID: 3996501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. II. Pontine and mesencephalic nuclei.
    Newman DB
    J Hirnforsch; 1985; 26(4):385-418. PubMed ID: 4067279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ascending input to the midbrain periaqueductal gray of the primate.
    Mantyh PW
    J Comp Neurol; 1982 Oct; 211(1):50-64. PubMed ID: 7174883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat.
    Holstege G
    J Comp Neurol; 1987 Jun; 260(1):98-126. PubMed ID: 3496365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atlas of catecholamine perikarya, varicosities and pathways in the brainstem of the cat.
    Jones BE; Friedman L
    J Comp Neurol; 1983 Apr; 215(4):382-96. PubMed ID: 6863591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat.
    Hopkins DA; Holstege G
    Exp Brain Res; 1978 Aug; 32(4):529-47. PubMed ID: 689127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topographic organization of the brainstem afferents to the mediodorsal thalamic nucleus.
    Velayos JL; Reinoso-Suarez F
    J Comp Neurol; 1982 Mar; 206(1):17-27. PubMed ID: 7096629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker.
    Swanson LW; Hartman BK
    J Comp Neurol; 1975 Oct; 163(4):467-505. PubMed ID: 1100685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of catecholaminergic neuronal systems in the canine medulla oblongata and pons.
    Barnes KL; Chernicky CL; Block CH; Ferrario CM
    J Comp Neurol; 1988 Aug; 274(1):127-41. PubMed ID: 3417906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collateralized projections from neurons in the rostral medulla to the nucleus locus coeruleus, the nucleus of the solitary tract and the periaqueductal gray.
    Van Bockstaele EJ; Aston-Jones G
    Neuroscience; 1992 Aug; 49(3):653-68. PubMed ID: 1380136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation.
    Basbaum AI; Fields HL
    J Comp Neurol; 1979 Oct; 187(3):513-31. PubMed ID: 489790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The raphe-reticular connection. An experimental study using the silver impregnation and horseradish peroxidase techniques in the rat.
    Petrovický P
    J Hirnforsch; 1981; 22(4):429-39. PubMed ID: 7310118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of phenylethanolamine N-methyltransferase cell bodies, axons, and terminals in monkey brainstem: an immunohistochemical mapping study.
    Carlton SM; Honda CN; Denoroy L
    J Comp Neurol; 1989 Sep; 287(3):273-85. PubMed ID: 2778106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catecholamines and serotonin in the caudal medulla of the rat: combined neurochemical-histofluorescence study.
    Rea MA; Aprison MH; Felten DL
    Brain Res Bull; 1982; 9(1-6):227-36. PubMed ID: 7172028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascending projections of the brain stem reticular formation in a nonmammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain.
    Ten Donkelaar HJ; De Boer-Van Huizen R
    J Comp Neurol; 1981 Aug; 200(4):501-28. PubMed ID: 7263959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.