These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7172030)

  • 1. Histochemical mapping of catecholaminergic neurons and their ascending fiber pathways in the rhesus monkey brain.
    Tanaka C; Ishikawa M; Shimada S
    Brain Res Bull; 1982; 9(1-6):255-70. PubMed ID: 7172030
    [No Abstract]   [Full Text] [Related]  

  • 2. Ascending monoamine-containing fiber pathways related to intracranial self-stimulation: histochemical fluorescence study.
    Clavier RM; Routtenberg A
    Brain Res; 1974 May; 72(1):25-40. PubMed ID: 4364475
    [No Abstract]   [Full Text] [Related]  

  • 3. Aqueous aldehyde (Faglu) histofluorescence for catecholamines in 2 micron sections using polyethylene glycol embedding.
    Schöler J; Armstrong WE
    Brain Res Bull; 1982; 9(1-6):27-31. PubMed ID: 6756549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The organization of monoamine-containing neurons in the brain of the salamander, Necturus maculosus.
    Dubé L; Parent A
    J Comp Neurol; 1982 Oct; 211(1):21-30. PubMed ID: 7174882
    [No Abstract]   [Full Text] [Related]  

  • 5. The luteinizing hormone-releasing hormone pathways in rhesus (Macaca mulatta) and pigtailed (Macaca nemestrina) monkeys: new observations on thick, unembedded sections.
    Silverman AJ; Antunes JL; Abrams GM; Nilaver G; Thau R; Robinson JA; Ferin M; Krey LC
    J Comp Neurol; 1982 Nov; 211(3):309-17. PubMed ID: 6757282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origin and distribution of catecholaminergic axon terminals in the cerebral cortex of the turtle (Chrysemys picta).
    Parent A; Poitras D
    Brain Res; 1974 Oct; 78(3):345-58. PubMed ID: 4423150
    [No Abstract]   [Full Text] [Related]  

  • 7. Cells of origin of descending pathways to the spinal cord in the clawed toad (Xenopus laevis).
    ten Donkelaar HJ; de Boer-van Huizen R; Schouten FT; Eggen SJ
    Neuroscience; 1981; 6(11):2297-312. PubMed ID: 7329548
    [No Abstract]   [Full Text] [Related]  

  • 8. Habenulopetal catecholaminergic projections in the rat brain: a combined Fluoro-Gold/catecholamine fluorescence study.
    Du JH; Qiao JT
    Brain Res; 1990 Nov; 533(2):334-7. PubMed ID: 2289148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catecholaminergic innervation of the subthalamic nucleus: evidence for a rostral continuation of the A9 (substantia nigra) dopaminergic cell group.
    Meibach RC; Katzman R
    Brain Res; 1979 Sep; 173(2):364-8. PubMed ID: 487099
    [No Abstract]   [Full Text] [Related]  

  • 10. Composition of the tectal and posterior commissures of the chick (Gallus domesticus).
    Ehrlich D; Saleh CN
    Neurosci Lett; 1982 Nov; 33(2):115-21. PubMed ID: 7155453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The brain of the lamprey in a comparative perspective.
    Nieuwenhuys R
    Ann N Y Acad Sci; 1977 Sep; 299():97-145. PubMed ID: 280225
    [No Abstract]   [Full Text] [Related]  

  • 12. Catecholamine neurons in the brain stem of tree shrew (Tupaia).
    Murray HM; Dominguez WF; Martinez JE
    Brain Res Bull; 1982; 9(1-6):205-15. PubMed ID: 7172027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The organisation of catecholamine-containing neurons in the brain of the rhesus monkey (Macaca mulatta).
    Schofield SP; Everitt BJ
    J Anat; 1981 May; 132(Pt 3):391-418. PubMed ID: 7298491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological analysis of the brainstem of the reedfish, Erpetoichthys calabaricus.
    Nieuwenhuys R; Oey PL
    J Comp Neurol; 1983 Jan; 213(2):220-32. PubMed ID: 6841670
    [No Abstract]   [Full Text] [Related]  

  • 15. Origin and termination of the diencephalo-spinal dopamine system in the rat.
    Skagerberg G; Björklund A; Lindvall O; Schmidt RH
    Brain Res Bull; 1982; 9(1-6):237-44. PubMed ID: 7172029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efferent projections of the superior colliculus in the opossum.
    Rafols JA; Matzke HA
    J Comp Neurol; 1970 Feb; 138(2):147-60. PubMed ID: 5413318
    [No Abstract]   [Full Text] [Related]  

  • 17. Nuclei and tracts of the di-mesencephalon of the parakeet.
    Verhaart WJ
    Acta Anat (Basel); 1976; 94(1):89-118. PubMed ID: 961342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrograde neuronal labeling of cells of origin of descending brainstem pathways in rat using SITS as a retrograde tracer.
    Huisman AM; Kuypers HG; Ververs B
    Brain Res; 1983 Dec; 289(1-2):305-10. PubMed ID: 6661648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ascending projections of the brain stem reticular formation in a nonmammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain.
    Ten Donkelaar HJ; De Boer-Van Huizen R
    J Comp Neurol; 1981 Aug; 200(4):501-28. PubMed ID: 7263959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of phenylethanolamine-N-methyltransferase-immunoreactive perikarya and fibers in the brain of the lizard Gekko gecko.
    Smeets WJ; Jonker AJ
    Brain Behav Evol; 1990; 36(1):59-72. PubMed ID: 2257480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.