These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7172049)

  • 41. Adrenergic innervation of large cerebral blood vessels of the rabbit studied by fluorescence microscopy. Absence of features that might contribute to non-uniform change in cerebral blood flow.
    Purdy RE; Bevan JA
    Stroke; 1977; 8(1):82-7. PubMed ID: 835161
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of chronic subarachnoid hemorrhage on basal endothelium-derived relaxing factor activity in intrathecal cerebral arteries.
    Edwards DH; Byrne JV; Griffith TM
    J Neurosurg; 1992 May; 76(5):830-7. PubMed ID: 1314293
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrastructural evidence of arterial denervation following experimental subarachnoid hemorrhage.
    Duff TA; Scott G; Feilbach JA
    J Neurosurg; 1986 Feb; 64(2):292-7. PubMed ID: 3944639
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relaxant effect of calcitonin gene-related peptide on cerebral arterial spasm induced by experimental subarachnoid hemorrhage in dogs.
    Nozaki K; Uemura Y; Okamoto S; Kikuchi H; Mizuno N
    J Neurosurg; 1989 Oct; 71(4):558-64. PubMed ID: 2795174
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adrenergic denervation in rabbits with diabetes mellitus.
    Cohen RA; Tesfamariam B; Weisbrod RM; Zitnay KM
    Am J Physiol; 1990 Jul; 259(1 Pt 2):H55-61. PubMed ID: 2375413
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reduced tyrosine hydroxylase-like immunoreactivity around cerebral arteries after experimental subarachnoid hemorrhage in rats. An immunohistochemical study.
    Hara H; Kobayashi S
    Acta Neuropathol; 1988; 75(5):538-40. PubMed ID: 2897754
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of functional response of cerebral arteries by a new morphometric technique.
    Bunc G; Kovacic S; Strnad S
    Auton Neurosci; 2001 Oct; 93(1-2):41-7. PubMed ID: 11695705
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Feline cerebral veins and arteries: comparison of autonomic innervation and vasomotor responses.
    Edvinsson L; McCulloch J; Uddman R
    J Physiol; 1982 Apr; 325():161-73. PubMed ID: 6180162
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Constrictive endarteropathy following experimental subarachnoid hemorrhage.
    Clower BR; Smith RR; Haining JL; Lockard J
    Stroke; 1981; 12(4):501-8. PubMed ID: 7314173
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unresponsiveness of pial precapillary vessels to catecholamines and sympathetic nerve stimulation.
    Raper AJ; Kontos HA; Wei EP; Patterson JL
    Circ Res; 1972 Aug; 31(2):257-66. PubMed ID: 5049741
    [No Abstract]   [Full Text] [Related]  

  • 51. Cerebrovascular and metabolic changes during the delayed vasospasm following experimental subarachnoid hemorrhage in baboons, and treatment with a calcium antagonist.
    Sahlin C; Brismar J; Delgado T; Owman C; Salford LG; Svendgaard NA
    Brain Res; 1987 Feb; 403(2):313-32. PubMed ID: 3828823
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neuropeptide Y: immunocytochemical localization to and effect upon feline pial arteries and veins in vitro and in situ.
    Edvinsson L; Emson P; McCulloch J; Tatemoto K; Uddman R
    Acta Physiol Scand; 1984 Oct; 122(2):155-63. PubMed ID: 6549101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Noradrenaline and adenosine triphosphate as co-transmitters of neurogenic vasoconstriction in rabbit mesenteric artery.
    von Kügelgen I; Starke K
    J Physiol; 1985 Oct; 367():435-55. PubMed ID: 2865364
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential effects of electrical stimulation of the dorsal raphe nucleus and of cervical sympathectomy on serotonin and noradrenaline concentrations in major cerebral arteries and pial vessels in the rat.
    Bonvento G; Lacombe P; MacKenzie ET; Rouquier L; Scatton B; Seylaz J
    J Cereb Blood Flow Metab; 1990 Jan; 10(1):123-6. PubMed ID: 1688863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence against serotonin as a vasoconstrictor neurotransmitter in the rabbit basilar artery.
    Levitt B; Duckles SP
    J Pharmacol Exp Ther; 1986 Sep; 238(3):880-5. PubMed ID: 3091810
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Changes in sensitivity of cerebral vessels to noradrenaline and 5-hydroxytryptamine in the presence of subarachnoid blood.
    Svendgaard NA; Edvinsson L; Owman C
    Acta Physiol Scand Suppl; 1977; 452():73-5. PubMed ID: 273378
    [No Abstract]   [Full Text] [Related]  

  • 57. Sub-pial infiltration of blood products following experimental subarachnoid haemorrhage.
    Cardoso ER; Peterson EW; Hendelman W
    Acta Neurochir (Wien); 1985; 76(3-4):140-4. PubMed ID: 4025021
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gene transfer of calcitonin gene-related peptide prevents vasoconstriction after subarachnoid hemorrhage.
    Toyoda K; Faraci FM; Watanabe Y; Ueda T; Andresen JJ; Chu Y; Otake S; Heistad DD
    Circ Res; 2000 Oct; 87(9):818-24. PubMed ID: 11055987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anatomical relationships of the pia mater to cerebral blood vessels in man.
    Hutchings M; Weller RO
    J Neurosurg; 1986 Sep; 65(3):316-25. PubMed ID: 3734882
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Responsiveness of human infant cerebral arteries to sympathetic nerve stimulation and vasoactive agents.
    Bevan R; Dodge J; Nichols P; Poseno T; Vijayakumaran E; Wellman T; Bevan JA
    Pediatr Res; 1998 Nov; 44(5):730-9. PubMed ID: 9803455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.