These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7172207)

  • 1. Brain stem innervation of the caudal neurosecretory system.
    O'Brien JP; Kriebel RM
    Cell Tissue Res; 1982; 227(1):153-60. PubMed ID: 7172207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytology of brain stem neurons projecting to the caudal neurosecretory complex: an HRP-electron microscopic study.
    Miller KE; Kriebel RM
    Brain Res Bull; 1986 Feb; 16(2):183-8. PubMed ID: 3697787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The caudal neurosecretory system of Poecilia sphenops (Poeciliidae).
    Kriebel RM
    J Morphol; 1980 Aug; 165(2):157-65. PubMed ID: 7452727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brainstem location of serotonin neurons projecting to the caudal neurosecretory complex.
    Cohen SL; Kriebel RM
    Brain Res Bull; 1989 Mar; 22(3):481-7. PubMed ID: 2713721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mormyrid brainstem. I. Distribution of brainstem neurones projecting to the spinal cord in Gnathonemus petersii. An HRP study.
    Hlavacek M; Tahar M; Libouban S; Szabo T
    J Hirnforsch; 1984; 25(6):603-15. PubMed ID: 6526990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascending projections of the brain stem reticular formation in a nonmammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain.
    Ten Donkelaar HJ; De Boer-Van Huizen R
    J Comp Neurol; 1981 Aug; 200(4):501-28. PubMed ID: 7263959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain.
    Abols IA; Basbaum AI
    J Comp Neurol; 1981 Sep; 201(2):285-97. PubMed ID: 7287930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brainstem afferents to the rostral (juxtafacial) nucleus paragigantocellularis: integration of exteroceptive and interoceptive sensory inputs in the ventral tegmentum.
    Van Bockstaele EJ; Akaoka H; Aston-Jones G
    Brain Res; 1993 Feb; 603(1):1-18. PubMed ID: 7680934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Afferents to brain stem nuclei (brain stem raphe, nucleus reticularis pontis caudalis and nucleus gigantocellularis) in the rat as demonstrated by microiontophoretically applied horseradish peroxidase.
    Gallager DW; Pert A
    Brain Res; 1978 Apr; 144(2):257-75. PubMed ID: 646855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural pathway for aggressive display in Betta splendens: midbrain and hindbrain control of gill-cover erection behavior.
    Gorlick DL
    Brain Behav Evol; 1990; 36(4):227-36. PubMed ID: 2279236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary afferent projections from the upper respiratory tract in the muskrat.
    Panneton WM
    J Comp Neurol; 1991 Jun; 308(1):51-65. PubMed ID: 1714922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brainstem projections to the major respiratory neuron populations in the medulla of the cat.
    Smith JC; Morrison DE; Ellenberger HH; Otto MR; Feldman JL
    J Comp Neurol; 1989 Mar; 281(1):69-96. PubMed ID: 2466879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Afferent and efferent connections of the paramedian reticular nucleus in the brain stem of cats.
    Pan CM; Wang SD; Chang CY; Horng HT; Lin AM; Chai CY
    Chin J Physiol; 1992; 35(3):181-96. PubMed ID: 1308763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Afferents to the abducens nucleus in the monkey and cat.
    Langer T; Kaneko CR; Scudder CA; Fuchs AF
    J Comp Neurol; 1986 Mar; 245(3):379-400. PubMed ID: 3082944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain stem projections to lobule VII of the posterior vermis in the squirrel monkey: as demonstrated by the retrograde axonal transport of tritiated horseradish peroxidase.
    Frankfurter A; Weber JT; Harting JK
    Brain Res; 1977 Mar; 124(1):135-9. PubMed ID: 66085
    [No Abstract]   [Full Text] [Related]  

  • 16. Origins of the descending spinal projections in petromyzontid and myxinoid agnathans.
    Ronan M
    J Comp Neurol; 1989 Mar; 281(1):54-68. PubMed ID: 2925902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique.
    Aghajanian GK; Wang RY
    Brain Res; 1977 Feb; 122(2):229-42. PubMed ID: 837230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caudal neurosecretory system synaptic morphology following deafferentation: an electron microscopic degeneration study.
    O'Brien JP; Kriebel RM
    Brain Res Bull; 1983 Jan; 10(1):89-95. PubMed ID: 6824970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant lateral-line afferent terminals in the electroreceptive dorsal nucleus of lampreys.
    Kishida R; Koyama H; Goris RC
    Neurosci Res; 1988 Oct; 6(1):83-7. PubMed ID: 3200522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct projections from the ventrolateral medulla oblongata to the limbic forebrain: anterograde and retrograde tract-tracing studies in the rat.
    Zagon A; Totterdell S; Jones RS
    J Comp Neurol; 1994 Feb; 340(4):445-68. PubMed ID: 7516349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.