These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7173361)

  • 1. Effects of climbing fiber destruction on large dendrite spines of Purkinje cells.
    Baetens D; Garcia-Segura LM; Perrelet A
    Exp Brain Res; 1982; 48(2):256-62. PubMed ID: 7173361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climbing fiber destruction affects dendrite and spine membrane organization in Purkinje cells.
    Garcia-Segura LM; Perrelet A
    Brain Res; 1982 Mar; 236(2):253-60. PubMed ID: 7066687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the rodent cerebellum and synaptic re-formation of donor climbing terminals on spines of the host Purkinje dendrites after chemical deafferentation.
    Kawamura K; Murase S; Yuasa S
    J Exp Biol; 1990 Oct; 153():289-303. PubMed ID: 2280226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. II. Synaptic organization on reinnervated Purkinje cells.
    Rossi F; van der Want JJ; Wiklund L; Strata P
    J Comp Neurol; 1991 Jun; 308(4):536-54. PubMed ID: 1865016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trans-synaptic modulation of Purkinje cell plasma membrane organization by climbing fiber axonal flow.
    Garcia-Segura LM
    Exp Brain Res; 1985; 61(1):186-93. PubMed ID: 4085596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative study of the Purkinje cell dendritic spines in the rat cerebellum.
    Napper RM; Harvey RJ
    J Comp Neurol; 1988 Aug; 274(2):158-67. PubMed ID: 3209739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplantation of embryonic olive in the climbing-fiber-deprived adult rat cerebellum: synaptogenesis on host Purkinje dendritic spines by donor climbing fibers.
    Kawamura K; Murase S; Yuasa S; Yoshida K
    Neurosci Res Suppl; 1990; 13():S61-4. PubMed ID: 2259488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purkinje cell spinogenesis during architectural rewiring in the mature cerebellum.
    Cesa R; Morando L; Strata P
    Eur J Neurosci; 2005 Aug; 22(3):579-86. PubMed ID: 16101739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the structure of synaptic junctions during climbing fiber synaptogenesis.
    Landis DM; Payne HR; Weinstein LA
    Synapse; 1989; 4(4):281-93. PubMed ID: 2603147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of spine formation by electrical activity in the adult rat cerebellum.
    Bravin M; Morando L; Vercelli A; Rossi F; Strata P
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1704-9. PubMed ID: 9990088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postsynaptic membrane domains in the molecular layer of the cerebellum: a correlation between presynaptic inputs and postsynaptic plasma membrane organization.
    Garcia-Segura LM; Perrelet A
    Brain Res; 1984 Nov; 321(2):255-66. PubMed ID: 6541959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the effects of climbing fiber deafferentation in adult and weanling rats.
    Anderson WA; Flumerfelt BA
    Brain Res; 1986 Sep; 383(1-2):228-44. PubMed ID: 3768690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palisade pattern of mormyrid Purkinje cells: a correlated light and electron microscopic study.
    Meek J; Nieuwenhuys R
    J Comp Neurol; 1991 Apr; 306(1):156-92. PubMed ID: 2040726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of olivocerebellar fibers in the clawed toad, Xenopus laevis: a light and electron microscopical HRP study.
    van der Linden JA; ten Donkelaar HJ; De Boer-van Huizen R
    J Comp Neurol; 1990 Mar; 293(2):236-52. PubMed ID: 19189714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postnatal maturation of rat Purkinje cells cultivated in the absence of two afferent systems: an ultrastructural study.
    Privat A; Drian MJ
    J Comp Neurol; 1976 Mar; 166(2):201-43. PubMed ID: 1262555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cerebellum of the frog Rana ridibunda. An electron microscopic study.
    González A; Muñoz M; Carrato A
    J Hirnforsch; 1983; 24(6):633-43. PubMed ID: 6672096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rat olivocerebellar system visualized in detail with anterograde PHA-L tracing technique, and sprouting of climbing fibers demonstrated after subtotal olivary lesions.
    Wiklund L; Rossi F; Strata P; van der Want JJ
    Eur J Morphol; 1990; 28(2-4):256-67. PubMed ID: 2245134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology of Purkinje cell axon terminals in intracerebellar nuclei following inferior olive lesion.
    Rossi F; Cantino D; Strata P
    Neuroscience; 1987 Jul; 22(1):99-112. PubMed ID: 2819781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze-fracture of developing neuronal plasma membrane in postnatal cerebellum.
    Garcia-Segura LM; Perrelet A
    Brain Res; 1981 Mar; 208(1):19-33. PubMed ID: 7470920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colchicine injection in the inferior olivary nucleus increases the number of Purkinje cell dendritic spines.
    Baetens D; Tribollet E; Garcia-Segura LM
    Neurosci Lett; 1983 Aug; 38(3):239-44. PubMed ID: 6195556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.