These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 7173737)

  • 1. [Effects of 2,3-dimethoxy-5-methyl-6-(10'-hydroxydecyl)-1,4-benzoquinone (CV-2619) on the energy metabolism of red blood cells of rats].
    Shimamoto N; Goto N; Hirata M
    Nihon Yakurigaku Zasshi; 1982 Aug; 80(2):137-45. PubMed ID: 7173737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of idebenone (CV-2619) on neurological deficits, local cerebral blood flow, and energy metabolism in rats with experimental cerebral ischemia].
    Nagaoka A; Suno M; Shibota M; Kakihana M
    Nihon Yakurigaku Zasshi; 1984 Sep; 84(3):303-9. PubMed ID: 6500404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of 2,3-dimethoxy-5-methyl-6-(10'-hydroxydecyl)-1,4-benzoquinone (CV-2619) on myocardial energy metabolism in the hypertrophied heart of spontaneously hypertensive rats].
    Shimamoto N; Tanabe M; Imamoto T; Hirata M
    Nihon Yakurigaku Zasshi; 1982 Oct; 80(4):299-306. PubMed ID: 6295897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of 2,3-dimethoxy-5-methyl-6-(10'-hydroxydecyl)-1,4-benzoquinone (CV-2619) on adriamycin-induced ECG abnormalities and myocardial energy metabolism in spontaneously hypertensive rats].
    Shimamoto N; Tanabe M; Hirata M
    Nihon Yakurigaku Zasshi; 1982 Oct; 80(4):307-15. PubMed ID: 7152396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of idebenone (CV-2619) on the concentrations of acetylcholine and choline in various brain regions of rats with cerebral ischemia.
    Kakihana M; Yamazaki N; Nagaoka A
    Jpn J Pharmacol; 1984 Nov; 36(3):357-63. PubMed ID: 6521077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nitric oxide donors on energy metabolism of rat erythrocytes.
    Maletic SD; Dragicevic-Djokovic LM; Zikic RV; Stajn AS; Milenkovic P; Kostic MM
    J Environ Pathol Toxicol Oncol; 2000; 19(4):383-90. PubMed ID: 11213021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the energy metabolism of Plasmodium berghei.
    Jacobasch G; Buckwitz D; Gerth C; Thamm R
    Biomed Biochim Acta; 1990; 49(2-3):S289-94. PubMed ID: 2143651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of curare and methohexital-Na on the content of energy-rich phosphates and substrates of glycolysis in rat liver (author's transl)].
    Schütz A; Meyer G
    Arzneimittelforschung; 1982; 32(5):522-5. PubMed ID: 7201830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ifosfamide metabolite chloroacetaldehyde inhibits cell proliferation and glucose metabolism without decreasing cellular ATP content in human breast cancer cells MCF-7.
    Knouzy B; Dubourg L; Baverel G; Michoudet C
    J Appl Toxicol; 2010 Apr; 30(3):204-11. PubMed ID: 19774546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nitroglycerin on energy metabolism of rat reticulocytes.
    Maletić SD; Kostić MM
    J Physiol Pharmacol; 1999 Mar; 50(1):75-87. PubMed ID: 10210156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of pH on the regulatory characteristics of energy metabolism in human erythrocytes].
    Platonova OV; Agranenko VA; Ataullakhanov FI; Vitvitskiĭ VM; Kiiatkina NV
    Biokhimiia; 1986 Aug; 51(8):1384-91. PubMed ID: 3768440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of ammonia chloride in vitro on the energy metabolism of red blood cells in sheep.
    Debski B
    Acta Physiol Pol; 1982; 33(1-2):83-90. PubMed ID: 7158385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sodium fluoride on glycolysis in human erythrocytes and Ehrlich ascites tumour cells in vitro.
    Gumińska M; Sterkowicz J
    Acta Biochim Pol; 1976; 23(4):285-91. PubMed ID: 1035019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of buthobendin and epinephrine on glycolytic energy formation and magnesium concentration in vitro and in vivo.
    Gumińska M; Kedryna T; Marchut E; Stachurska M
    Pol J Pharmacol Pharm; 1991; 43(2):121-7. PubMed ID: 1835000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Change in energy metabolism of ascites cancer cells with a decrease in pH].
    Gabaĭ VL; Mosin AF
    Biokhimiia; 1991 Sep; 56(9):1652-60. PubMed ID: 1747427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitors of glycolytic metabolism affect neurulation-staged mouse conceptuses in vitro.
    Hunter ES; Tugman JA
    Teratology; 1995 Dec; 52(6):317-23. PubMed ID: 8711618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The role of cAMP in the energy metabolism of human erythrocytes].
    Mojsilović L; Zivković R; Kostić M
    Bilt Hematol Transfuz; 1981; 9(1-3):53-9. PubMed ID: 6299268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state.
    Ortenblad N; Macdonald WA; Sahlin K
    Biochem J; 2009 May; 420(2):161-8. PubMed ID: 19250062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycolysis in Plasmodium falciparum results in modulation of host enzyme activities.
    Mehta M; Sonawat HM; Sharma S
    J Vector Borne Dis; 2006 Sep; 43(3):95-103. PubMed ID: 17024857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.